Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 13(611): eaba7791, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524860

ABSTRACT

SUMOylation, the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to protein substrates, has been reported to suppress type I interferon (IFN1) responses. TAK-981, a selective small-molecule inhibitor of SUMOylation, pharmacologically reactivates IFN1 signaling and immune responses against cancers. In vivo treatment of wild-type mice with TAK-981 up-regulated IFN1 gene expression in blood cells and splenocytes. Ex vivo treatment of mouse and human dendritic cells promoted their IFN1-dependent activation, and vaccination studies in mice demonstrated stimulation of antigen cross-presentation and T cell priming in vivo. TAK-981 also directly stimulated T cell activation, driving enhanced T cell sensitivity and response to antigen ex vivo. Consistent with these observations, TAK-981 inhibited growth of syngeneic A20 and MC38 tumors in mice, dependent upon IFN1 signaling and CD8+ T cells, and associated with increased intratumoral T and natural killer cell number and activation. Combination of TAK-981 with anti-PD1 or anti-CTLA4 antibodies improved the survival of mice bearing syngeneic CT26 and MC38 tumors. In conclusion, TAK-981 is a first-in-class SUMOylation inhibitor that promotes antitumor immune responses through activation of IFN1 signaling. TAK-981 is currently being studied in phase 1 clinical trials (NCT03648372, NCT04074330, NCT04776018, and NCT04381650) for the treatment of patients with solid tumors and lymphomas.


Subject(s)
Immunity , Sumoylation
2.
J Med Chem ; 64(10): 6902-6923, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34000802

ABSTRACT

Stimulator of Interferon Genes (STING) plays an important role in innate immunity by inducing type I interferon production upon infection with intracellular pathogens. STING activation can promote increased T-cell activation and inflammation in the tumor microenvironment, resulting in antitumor immunity. Natural and synthetic cyclic dinucleotides (CDNs) are known to activate STING, and several synthetic CDN molecules are being investigated in the clinic using an intratumoral administration route. Here, we describe the identification of STING agonist 15a, a cyclic dinucleotide structurally diversified from natural ligands with optimized properties for systemic intravenous (iv) administration. Our studies have shown that STING activation by 15a leads to an acute innate immune response as measured by cytokine secretion and adaptive immune response via activation of CD8+ cytotoxic T-cells, which ultimately provides robust antitumor efficacy.


Subject(s)
Membrane Proteins/agonists , Nucleotides, Cyclic/chemistry , Pyrimidines/chemistry , Administration, Intravenous , Animals , Binding Sites , Cell Line, Tumor , Half-Life , Humans , Immunotherapy , Membrane Proteins/metabolism , Mice , Molecular Docking Simulation , Neoplasms/pathology , Neoplasms/therapy , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/therapeutic use , Phosphates/chemistry , Rats , Structure-Activity Relationship , Transplantation, Heterologous
3.
J Med Chem ; 64(5): 2501-2520, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33631934

ABSTRACT

SUMOylation is a reversible post-translational modification that regulates protein function through covalent attachment of small ubiquitin-like modifier (SUMO) proteins. The process of SUMOylating proteins involves an enzymatic cascade, the first step of which entails the activation of a SUMO protein through an ATP-dependent process catalyzed by SUMO-activating enzyme (SAE). Here, we describe the identification of TAK-981, a mechanism-based inhibitor of SAE which forms a SUMO-TAK-981 adduct as the inhibitory species within the enzyme catalytic site. Optimization of selectivity against related enzymes as well as enhancement of mean residence time of the adduct were critical to the identification of compounds with potent cellular pathway inhibition and ultimately a prolonged pharmacodynamic effect and efficacy in preclinical tumor models, culminating in the identification of the clinical molecule TAK-981.


Subject(s)
Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Sulfonic Acids/therapeutic use , Sumoylation/drug effects , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Mice , Molecular Structure , Protein Binding , Protein Processing, Post-Translational/drug effects , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/metabolism , Ubiquitin-Activating Enzymes/metabolism , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem ; 28(19): 115681, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32912429

ABSTRACT

Autophagy is postulated to be required by cancer cells to survive periods of metabolic and/or hypoxic stress. ATG7 is the E1 enzyme that is required for activation of Ubl conjugation pathways involved in autophagosome formation. This article describes the design and optimization of pyrazolopyrimidine sulfamate compounds as potent and selective inhibitors of ATG7. Cellular levels of the autophagy markers, LC3B and NBR1, are regulated following treatment with these compounds.


Subject(s)
Autophagy-Related Protein 7/antagonists & inhibitors , Drug Discovery , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Sulfonic Acids/pharmacology , Autophagy/drug effects , Autophagy-Related Protein 7/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry
5.
Nat Chem Biol ; 13(11): 1164-1171, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28892090

ABSTRACT

Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.


Subject(s)
Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Small Ubiquitin-Related Modifier Proteins/antagonists & inhibitors , Sumoylation , Cell Proliferation/drug effects , Chromosome Segregation/drug effects , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc , Humans , Mitosis/drug effects , Neoplasms/genetics , Neoplasms/pathology , Protein Processing, Post-Translational , Tumor Cells, Cultured
6.
Bioorg Med Chem Lett ; 26(4): 1156-60, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26804230

ABSTRACT

Investigations of a biaryl ether scaffold identified tetrahydronaphthalene Raf inhibitors with good in vivo activity; however these compounds had affinity toward the hERG potassium channel. Herein we describe our work to eliminate this hERG activity via alteration of the substituents on the benzoic amide functionality. The resulting compounds have improved selectivity against the hERG channel, good pharmacokinetic properties and potently inhibit the Raf pathway in vivo.


Subject(s)
Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Tetrahydronaphthalenes/chemistry , Animals , Cell Line, Tumor , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Mutagenesis , Neoplasms/drug therapy , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tetrahydronaphthalenes/pharmacokinetics , Tetrahydronaphthalenes/therapeutic use , Transplantation, Heterologous
7.
Bioorg Med Chem Lett ; 24(23): 5450-4, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25454270

ABSTRACT

Acyl derivatives of 4-(aminomethyl)-N-hydroxybenzamide are potent sub-type selective HDAC6 inhibitors. Constrained heterocyclic analogs based on 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine show further enhanced HDAC6 selectivity and inhibitory activity in cells. Homology models suggest that the heterocyclic spacer can more effectively access the wider catalytic channel of HDAC6 compared to other HDAC sub-types.


Subject(s)
Histone Deacetylase Inhibitors/metabolism , Hydroxamic Acids/pharmacology , Pyrazines/metabolism , Protein Isoforms
8.
J Med Chem ; 54(6): 1836-46, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21341678

ABSTRACT

Inhibition of mutant B-Raf signaling, through either direct inhibition of the enzyme or inhibition of MEK, the direct substrate of Raf, has been demonstrated preclinically to inhibit tumor growth. Very recently, treatment of B-Raf mutant melanoma patients with a selective B-Raf inhibitor has resulted in promising preliminary evidence of antitumor activity. This article describes the design and optimization of tetrahydronaphthalene-derived compounds as potent inhibitors of the Raf pathway in vitro and in vivo. These compounds possess good pharmacokinetic properties in rodents and inhibit B-Raf mutant tumor growth in mouse xenograft models.


Subject(s)
Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Tetrahydronaphthalenes/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Crystallography, X-Ray , Drug Design , Melanoma, Experimental/drug therapy , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Mutation , Proto-Oncogene Proteins B-raf/genetics , Stereoisomerism , Structure-Activity Relationship , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Xenograft Model Antitumor Assays
9.
Org Lett ; 10(16): 3631-4, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18627172

ABSTRACT

A series of N-propargylindole-2-carboxamides were found to undergo a AuCl 3-catalyzed cycloisomerization to give beta-carbolinones in high yield. The corresponding beta-chlorocarboline derivative was prepared and used for Pd(0)-catalyzed cross-coupling chemistry directed toward the synthesis of lavendamycin analogues.


Subject(s)
Alkynes/chemistry , Gold Compounds/chemistry , Indoles/chemistry , Streptonigrin/analogs & derivatives , Carbolines/chemical synthesis , Carbolines/chemistry , Catalysis , Cyclization , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Palladium/chemistry , Stereoisomerism , Streptonigrin/chemical synthesis , Streptonigrin/chemistry
10.
Tetrahedron ; 64(6): 988-1001, 2008 Feb 04.
Article in English | MEDLINE | ID: mdl-18437248

ABSTRACT

Tandem carbonyl ylide formation-1,3-dipolar cycloaddition of alpha-diazo N-acetyl-tetrahydro-beta-carbolin-1-one derivatives occur efficiently in the presence of a dirhodium catalyst to afford bimolecular cycloadducts in high yield. The Rh(II)-catalyzed reaction also takes place intramolecularly to give products derived from trapping of the carbonyl ylide dipole with a tethered alkene. The power of the intramolecular cascade sequence is that it rapidly assembles a pentacyclic ring system containing three new stereocenters and two adjacent quaternary centers stereospecifically in a single step and in high yield.

11.
J Org Chem ; 73(7): 2792-802, 2008 Apr 04.
Article in English | MEDLINE | ID: mdl-18318547

ABSTRACT

The total synthesis of several members of the vinca and tacaman classes of indole alkaloids has been accomplished. The central step in the synthesis consists of an intramolecular [3+2]-cycloaddition reaction of an alpha-diazo indoloamide which delivers the pentacyclic skeleton of the natural product in excellent yield. The acid lability of the oxabicyclic structure was exploited to establish the trans-D/E ring fusion of (+/-)-3H-epivincamine (3). Finally, a base induced keto-amide ring contraction was utilized to generate the E-ring of the natural product. A variation of the cascade sequence of reactions used to synthesize (+/-)-3H-epivincamine was also employed for the synthesis of the tacaman alkaloids (+/-)-tacamonine and (+/-)-apotacamine.


Subject(s)
Indole Alkaloids/chemical synthesis , Indoles/chemistry , Rhodium/chemistry , Vinca Alkaloids/chemical synthesis , Vinca/chemistry , Catalysis , Cyclization , Indole Alkaloids/chemistry , Molecular Structure , Stereoisomerism , Vinca Alkaloids/chemistry
12.
Org Lett ; 9(19): 3805-7, 2007 Sep 13.
Article in English | MEDLINE | ID: mdl-17711291

ABSTRACT

The quasi-antiaromatic 2H-indol-2-one ring system is readily generated by treating a 3-hydroxy-substituted 1,3-dihydroindol-2-one with a Lewis acid. Stepwise addition of various pi-nucleophiles to the highly reactive 2H-indol-2-one system occurs smoothly to afford substituted oxindoles. The cyclization was also carried out in an intramolecular fashion to give spiro-substituted oxindoles in good yield.


Subject(s)
Indoles/chemistry , Macrocyclic Compounds/chemical synthesis , Cyclization , Indoles/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure
13.
Org Lett ; 9(17): 3249-52, 2007 Aug 16.
Article in English | MEDLINE | ID: mdl-17658832

ABSTRACT

A synthesis of (+/-)-3H-epivincamine is reported. Important steps include (1) a Rh(II)-catalyzed intramolecular [3+2]-cycloaddition of an alpha-diazo indolo amide, (2) a reductive ring opening of the cycloadduct, (3) a decarboethoxylation reaction, and (4) a base-induced keto-amide ring contraction.


Subject(s)
Rhodium/chemistry , Vincamine/chemical synthesis , Antihypertensive Agents/chemical synthesis , Cyclization , Vasodilator Agents/chemical synthesis
14.
Org Lett ; 8(11): 2209-12, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16706488

ABSTRACT

[reaction: see text] The synthesis of the highly substituted indole portion of the complex tremorgenic natural products lolicine A and B is presented. The Diels-Alder reaction of a quinone monoimine enables the synthesis of an appropriately substituted indole. The key step in the synthesis is a tandem isopropenyl cuprate addition/aldol cyclocondensation which provides the necessary functionality for elaboration to the 2,2,5,5-tetramethyltetrahydrofuran.


Subject(s)
Indoles/chemical synthesis , Mycotoxins/chemical synthesis , Terpenes/chemical synthesis , Crystallography, X-Ray , Cyclization , Indoles/chemistry , Mitosporic Fungi/chemistry , Molecular Conformation , Molecular Structure , Mycotoxins/chemistry , Terpenes/chemistry
15.
J Org Chem ; 70(16): 6519-22, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16050722

ABSTRACT

N-arylsulfonyl quinone monoimines undergo smooth cycloadditions in a [4+2] sense to yield the expected cycloadducts. The crude cycloadducts, when subjected to a short series of simple transformations, produce synthetically useful quantities of 5-triflyloxyindoles in excellent overall yields. Such compounds are excellent participants in cross-coupling chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...