Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 40(5): 800-810, 2024 May.
Article in English | MEDLINE | ID: mdl-38485599

ABSTRACT

OBJECTIVES: Heterogeneity and phase separation during network polymerization is a major issue contributing to the failure of dental adhesives. This study investigates how the ratio of hydrophobic crosslinkers to hydrophilic comonomer (C/H ratio), as well as cosolvent fraction (ethanol/water) influences the degree of heterogeneity and proclivity for phase separation in a series of model adhesive formulations. METHODS: Twelve formulations were investigated, with 4 different C/H ratios (7:1, 2.2:1, 1:1, 0.5:1) and 3 different overall cosolvent fractions (0, 10 and 20 wt%). The heterogeneity and phase behavior were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), dynamic mechanical analysis (DMA), small-angle x-ray scattering (SAXS) and atomic force microscopy (AFM). RESULTS: In resins without cosolvent, all characterizations confirm reduced heterogeneity as C/H ratio decreases. However, when 10 or 20 wt% of cosolvent is included in the adhesive formulation, a higher degree of heterogeneity and even distinct phase separation with domains ranging from a few hundreds of nanometers to a few micrometers in size form. This is particularly noticeable at lower C/H ratios, which is surprising as HEMA is commonly considered a compatibilizer between hydrophobic crosslinkers and aqueous (co)solvents. SIGNIFICANCE: Our experiments demonstrate that formulations with lower C/H ratio and thus a lower viscosity experience later onsets of diffusion limitations during polymerization, which favors thermodynamically driven phase separation. Therefore, to determine or predict the resulting phase structure of adhesive materials, it is necessary to consider the kinetics and diffusion constraints during the formation of the polymer network and not just the compatibility of resin constituents.


Subject(s)
Materials Testing , Microscopy, Atomic Force , Polymerization , Diffusion , Spectroscopy, Fourier Transform Infrared , Hydrophobic and Hydrophilic Interactions , X-Ray Diffraction , Scattering, Small Angle , Cross-Linking Reagents/chemistry , Dental Cements/chemistry , Solvents/chemistry , Water/chemistry
2.
PLoS One ; 10(9): e0138344, 2015.
Article in English | MEDLINE | ID: mdl-26390217

ABSTRACT

Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1), enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 µM) following standard differentiation supplemented with thyroid hormone (T3; 1 nM). The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1) were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Adrenergic beta-Agonists/pharmacology , Glycolysis/drug effects , Ion Channels/genetics , Isoproterenol/pharmacology , Mitochondrial Proteins/genetics , 3T3-L1 Cells , Adipocytes/cytology , Animals , Mice , RNA, Messenger/genetics , Uncoupling Protein 1 , Up-Regulation/drug effects
3.
BMC Neurosci ; 16: 51, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26260473

ABSTRACT

BACKGROUND: Recent evidence identifies the hippocampus, a brain structure commonly associated with learning and memory, as key to the regulation of food intake and the development and consequences of obesity. Intake of a high fat diet (HFD) results in altered consumptive behavior, hippocampal damage, and cognitive deficits. While many studies report the effects of HFD after chronic consumption and in the instance of obesity, few examine the events that occur following acute HFD consumption. In this study, male rats were fed either a control diet (10% fat by kcal) or HFD (45% fat by kcal) for 72 h. At the end of the 72-h period, serum and tissues were collected and weighed. Brains were rapidly frozen or formalin-fixed in preparation for qRT-PCR or immunohistochemistry, respectively. RESULTS: Acute intake of HFD resulted in higher serum levels of leptin and cholesterol, with no significant changes in final body weight or adipose tissue mass. In the dorsal hippocampus, transcription of the neuroprotective peptide galanin was significantly upregulated along with a trend for an increase in brain-derived neurotrophic factor and histone deacetylase 2 in the rats fed HFD. In the ventral hippocampus, there was a significant increase in histone deacetylase 4 and a decrease in galanin receptor 1 in this group. Results from immunohistochemistry validate strong presence of the galanin peptide in the CA1/CA2 region of the dorsal hippocampus. CONCLUSIONS: These results provide evidence for a distinct response in specific functional regions of the hippocampus following acute HFD intake.


Subject(s)
Diet, High-Fat/adverse effects , Galanin/metabolism , Hippocampus/metabolism , Adipose Tissue/pathology , Adipose Tissue/physiology , Animals , Body Weight/physiology , Cholesterol/blood , Eating/physiology , Enzyme-Linked Immunosorbent Assay , Gene Expression , Immunohistochemistry , Leptin/blood , Male , Organ Size , Rats, Long-Evans , Real-Time Polymerase Chain Reaction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...