Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Mol Biol ; 307(2): 619-36, 2001 Mar 23.
Article in English | MEDLINE | ID: mdl-11254386

ABSTRACT

The interaction of BamHI endonuclease with DNA has been studied crystallographically, but has not been characterized rigorously in solution. The enzyme binds in solution as a homodimer to its recognition site GGATCC. Only six base-pairs are directly recognized, but binding affinity (in the absence of the catalytic cofactor Mg(2+)) increases 5400-fold as oligonucleotide length increases from 10 to 14 bp. Binding is modulated by sequence context outside the recognition site, varying about 30-fold from the bes t (GTG or TAT) to the worst (CGG) flanking triplets. BamHI, EcoRI and EcoRV endonucleases all have different context preferences, suggesting that context affects binding by influencing the free energy levels of the complexes rather than that of the free DNA. Ethylation interference footprinting in the absence of divalent metal shows a localized and symmetrical pattern of phosphate contacts, with strong contacts at NpNpNpGGApTCC. In the presence of Mg(2+), first-order cleavage rate constants are identical in the two GGA half-sites, are the same for the two nicked intermediates and are unaffected by substrate length in the range 10-24 bp. DNA binding is strongly enhanced by mutations D94N, E111A or E113K, by binding of Ca(2+) at the active site, or by deletion of the scissile phosphate GpGATCC, indicating that a cluster of negative charges at the catalytic site contributes at least 3-4 kcal/mol of unfavorable binding free energy. This electrostatic repulsion destabilizes the enzyme-DNA complex and favors metal ion binding and progression to the transition state for cleavage.


Subject(s)
DNA/metabolism , Deoxyribonuclease BamHI/metabolism , Oligodeoxyribonucleotides/metabolism , Alkylation , Base Sequence , Binding Sites , Catalytic Domain , Cations, Divalent/pharmacology , DNA/chemistry , DNA Footprinting , Deoxyribonuclease BamHI/chemistry , Energy Metabolism , Kinetics , Molecular Probes , Molecular Weight , Oligodeoxyribonucleotides/chemistry , Protein Binding/drug effects , Protein Structure, Quaternary , Solutions , Static Electricity , Thermodynamics
3.
Structure ; 8(10): 1015-23, 2000 Oct 15.
Article in English | MEDLINE | ID: mdl-11080623

ABSTRACT

BACKGROUND: Site-specific protein-DNA complexes vary greatly in structural properties and in the thermodynamic strategy for achieving an appropriate binding free energy. A better understanding of the structural and energetic engineering principles might lead to rational methods for modification or design of such proteins. RESULTS: A novel analysis of ten site-specific protein-DNA complexes reveals a striking correspondence between the degree of imposed DNA distortion and the thermodynamic parameters of each system. For complexes with relatively undistorted DNA, favorable enthalpy change drives unfavorable entropy change, whereas for complexes with highly distorted DNA, unfavorable DeltaH degrees is driven by favorable DeltaS degrees. We show for the first time that protein-DNA associations have isothermal enthalpy-entropy compensation, distinct from temperature-dependent compensation, so DeltaH degrees and DeltaS degrees do not vary independently. All complexes have favorable DeltaH degrees from direct protein-DNA recognition interactions and favorable DeltaS degrees from water release. Systems that strongly distort the DNA nevertheless have net unfavorable DeltaH degrees as the result of molecular strain, primarily associated with the base pair destacking. These systems have little coupled protein folding and the strained interface suffers less immobilization, so DeltaS degrees is net favorable. By contrast, systems with little DNA distortion have net favorable DeltaH degrees, which must be counterbalanced by net unfavorable DeltaS degrees, derived from loss of vibrational entropy (a result of isothermal enthalpy-entropy compensation) and from coupling between DNA binding and protein folding. CONCLUSIONS: Isothermal enthalpy-entropy compensation implies that a structurally optimal, unstrained fit is achieved only at the cost of entropically unfavorable immobilization, whereas an enthalpically weaker, strained interface entails smaller entropic penalties.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Binding Sites , DNA/chemistry , Entropy , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Engineering , Structure-Activity Relationship , Substrate Specificity , Temperature , Transcription Factors/chemistry , Transcription Factors/metabolism
4.
J Mol Biol ; 269(1): 82-101, 1997 May 30.
Article in English | MEDLINE | ID: mdl-9193002

ABSTRACT

Restriction endonuclease EcoRV has been reported to be unable to distinguish its specific DNA site, GATATC, from non-specific DNA sites in the absence of the catalytic cofactor Mg2+, and thus to exercise sequence specificity solely in the catalytic step. In contrast, we show here that under appropriate conditions of pH and salt concentration, specific complexes with oligonucleotides containing the GATATC site can be detected by either filter-binding or gel-retardation. Equilibrium binding constants (K(A)) are easily measured by both direct equilibrium and equilibrium-competition methods. The preference for "specific" over "non-specific" binding at pH 7 in the absence of divalent cations is about 1000-fold (per mole of oligonucleotide) or 12,000-fold (per mole of binding sites). Ethylation-interference footprinting shows that the "specific" complex includes strong contacts to the phosphate groups GpApTpApTC. Specific DNA binding is strongly pH-dependent, decreasing about 15-fold for each increase of one pH unit above pH 6, but non-specific binding is not; thus, binding specificity decreases with increasing pH. Gel retardation and filter-binding at pH < or = 7 yield essentially identical values of K(A) for specific-site binding, but at pH > 7 gel retardation significantly underestimates K(A). Specific-site binding is stimulated about 700-fold by Ca2+ (not a cofactor for cleavage), but with non-cleavable 3'-phosphorothiolate and 4'-thiodeoxyribose derivatives whose response to Ca2+ is similar to that of the parent oligonucleotide, Mg2+ stimulates binding only fourfold and twofold, respectively. Thus, binding specificity is not dramatically enhanced by Mg2+. Taking into account discrimination in binding and in the first-order rate constant for phosphodiester bond scission, the overall discrimination exercised against the incorrect site GTTATC is about 10(7)-fold. EcoRV endonuclease is thus not a "new paradigm" for site-specific interaction without binding specificity, but like other type II restriction endonucleases achieves sequence specificity by discriminating both in DNA binding and in catalysis.


Subject(s)
DNA/metabolism , Deoxyribonucleases, Type II Site-Specific/metabolism , Binding Sites , Calcium/metabolism , Calcium/pharmacology , Deoxyribonuclease EcoRI/metabolism , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/drug effects , Electrophoresis/methods , Hydrogen-Ion Concentration , Kinetics , Magnesium/analysis , Magnesium/metabolism , Magnesium/pharmacology , Phosphates/chemistry , Salts , Substrate Specificity
5.
EMBO J ; 15(11): 2870-82, 1996 Jun 03.
Article in English | MEDLINE | ID: mdl-8654385

ABSTRACT

We have studied the interaction of EcoRI endonuclease with oligonucleotides containing GAATTC sites bearing one or two adenine-N6-methyl groups, which would be in steric conflict with key protein side chains involved in recognition and/or catalysis in the canonical complex. Single-strand methylation of either adenine produces small penalties in binding free energy (deltadeltaG0(S) approximately +1.4 kcal/mol), but elicits asymmetric structural adaptations in the complex, such that cleavage rate constants are strongly inhibited and unequal in the two DNA strands. The dependences of cleavage rate constants on the concentration of the Mg2+ cofactor are unaltered. When either adenine is methylated on both DNA strands, deltadeltaG0(S) (approximately +4 kcal/mol) is larger than the expected sum of the deltadeltaG0(S) values for the single-strand methylations, because the asymmetric adaptations cannot occur. Cleavage rate constants are reduced by 600 000-fold for the biologically relevant GAmATTC/CTTmAAG site, but the GmAATTC/CTTAmAG site forms only a non-specific complex that cannot be cleaved. These observations provide a detailed thermodynamic and kinetic explanation of how single-strand and double-strand methylation protect against endonuclease cleavage in vivo. We propose that non-additive effects on binding and structural 'adaptations' are important in understanding how DNA methylation modulates the biological activities of non-catalytic DNA binding proteins.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Deoxyribonuclease EcoRI/metabolism , Binding Sites , Computer Simulation , Escherichia coli/enzymology , Methylation , Models, Molecular , Protein Binding , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...