Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172377, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38604366

ABSTRACT

Antineoplastic medications are present in aquatic environments and are measured at relatively high concentrations in hospital sewage effluent. Thus, it is important to characterize risk associated with waterborne exposures to anticancer drugs. The drug 5-fluorouracil (5-FU) is used to treat several types of cancers, acting to inhibit cell division and cellular metabolism. The objectives of this study were to determine the effects of 5-FU on developmental endpoints and lipid composition in zebrafish. 5-FU did not negatively affect development nor survival in developing zebrafish at concentrations up to 1000 µg/L. However, 5-FU increased neutral lipid content in zebrafish larvae, indicating potential for lipid dysregulation. To further discern effects on lipids, lipidomics was conducted and a total of 164 lipids belonging to 14 lipid classes were identified. Significant changes (false discovery rate < 0.05) in abundance were detected for 19 lipids including some ceramides, ether-linked phosphatidylethanolamines, and sphingomyelins among others. We also measured the expression levels of 14 lipid-related enzymes and transporters (e.g., acox3, dgat1, fads2, fasn, elovl2) using real-time PCR; however, mRNA abundance levels were not affected, suggesting transcriptional changes may not be a primary mechanism underlying lipid dysregulation. Locomotor activity was measured in zebrafish as lipids are needed for swimming activity in larvae. Exposure to 5-FU did not affect locomotor activity up to 1000 µg/L. We conclude that lipids accumulate in larval zebrafish with exposure to 5-FU, which can subsequently affect lipid composition. These data reveal potential lipid signatures of 5-FU exposure and contribute to risk assessments for antineoplastic exposure in aquatic environments.


Subject(s)
Fluorouracil , Larva , Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Larva/drug effects , Lipid Metabolism/drug effects , Antineoplastic Agents/toxicity , Lipids
2.
Environ Toxicol Pharmacol ; 107: 104427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527598

ABSTRACT

Ifosfamide is an alkylating antineoplastic drug used in chemotherapy, but it is also detected in wastewater. Here, the objectives were to (1) determine teratogenic, cardiotoxic, and mitochondrial toxicity potential of ifosfamide exposure; (2) elucidate mechanisms of toxicity; (3) characterize exposure effects on larval behavior. Survival rate, hatch rate, and morphological deformity incidence were not different amongst treatments following exposure levels up to 1000 µg/L ifosfamide over 7 days. RNA-seq reveled 231 and 93 differentially expressed transcripts in larvae exposed to 1 µg/L and 100 µg/L ifosfamide, respectively. Several gene networks related to vascular resistance, cardiovascular response, and heart rate were affected, consistent with tachycardia observed in exposed embryonic fish. Hyperactivity in larval zebrafish was observed with ifosfamide exposure, potentially associated with dopamine-related gene networks. This study improves ecological risk assessment of antineoplastics by elucidating molecular mechanisms related to ifosfamide toxicity, and to alkylating agents in general.


Subject(s)
Antineoplastic Agents , Water Pollutants, Chemical , Animals , Zebrafish/metabolism , Ifosfamide/toxicity , Ifosfamide/metabolism , Heart Rate , Energy Metabolism , Antineoplastic Agents/pharmacology , Larva , Embryo, Nonmammalian , Water Pollutants, Chemical/metabolism
3.
Data Brief ; 48: 109099, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37089209

ABSTRACT

Ifosfamide is a cancer-fighting chemotherapeutic that has been detected in aquatic ecosystems. Zebrafish larvae were exposed to either 0, 1 or 100 µg/L ifosfamide in the water for 7 days, and fish were subjected to total RNA extraction and RNA-seq analysis with the Illumina NovoSeq 6000 instrument. Raw sequence data were processed through fastp and clean reads obtained by removing adapter and poly-N sequences, as well as low quality reads. Differential gene expression was performed using the abundance of transcripts that mapped to the zebrafish genome. To uncover putative targets regulated by microRNAs, Pathway Studio 12.0 was used to conduct a subnetwork enrichment analysis. Expression data were used to predict which microRNAs were important for the response to ifosfamide exposure. There were 21 common microRNAs identified in both the "IFOS1" and "IFOS100" datasets. These were MIR150, MIR6515, MIR657, MIR216A, m_Mir741, MIRLET7E, miR-let-7, MIR2392, r_Mir3551, MIR181B1, MIR33A, MIR502, MIR193B, MIR146A, MIR431, MIR647, m_Mir1192, MIR297, MIR328, and MIR4717. Data can be re-used to advance adverse outcome pathways in regulatory toxicology and to refine biomarker discovery for antineoplastics in aquatic environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...