Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(4): e11126, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571787

ABSTRACT

Cold-air pooling is an important topoclimatic process that creates temperature inversions with the coldest air at the lowest elevations. Incomplete understanding of sub-canopy spatiotemporal cold-air pooling dynamics and associated ecological impacts hinders predictions and conservation actions related to climate change and cold-dependent species and functions. To determine if and how cold-air pooling influences forest composition, we characterized the frequency, strength, and temporal dynamics of cold-air pooling in the sub-canopy at local to regional scales in New England, USA. We established a network of 48 plots along elevational transects and continuously measured sub-canopy air temperatures for 6-10 months (depending on site). We then estimated overstory and understory community temperature preferences by surveying tree composition in each plot and combining these data with known species temperature preferences. We found that cold-air pooling was frequent (19-43% seasonal occurrences) and that sites with the most frequent inversions displayed inverted forest composition patterns across slopes with more cold-adapted species, namely conifers, at low instead of high elevations. We also observed both local and regional variability in cold-air pooling dynamics, revealing that while cold-air pooling is common, it is also spatially complex. Our study, which uniquely focused on broad spatial and temporal scales, has revealed some rarely reported cold-air pooling dynamics. For instance, we discovered frequent and strong temperature inversions that occurred across seasons and in some locations were most frequent during the daytime, likely affecting forest composition. Together, our results show that cold-air pooling is a fundamental ecological process that requires integration into modeling efforts predicting future forest vegetation patterns under climate change, as well as greater consideration for conservation strategies identifying potential climate refugia for cold-adapted species.

2.
Sci Total Environ ; 727: 138668, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32334227

ABSTRACT

The global use of agricultural plastic films, which provide multiple benefits for food production, is expected to grow by 59% from 2018 to 2026. Disposal options for agricultural plastics are limited and a major global concern, as plastic fragments from all sources ultimately accumulate in the sea. Biodegradable plastic mulches could potentially alleviate the disposal problem, but little is known about how well they degrade under different environmental conditions. We quantified the degradation of biodegradable plastic mulches in compost and in soil at warm and cool climates (Tennessee and Washington). Mulch degradation was assessed by Fourier-transformed infrared (FTIR) spectroscopy, molecular weight analysis, thermogravimetric analysis (TGA), nuclear-magnetic resonance (NMR), and mulch surface-area quantification. Biodegradable plastic mulches degraded faster in compost than in soil: degradation, as assessed by surface-area reduction, in compost ranged from 85 to 99% after 18 weeks, and in soil from 61 to 83% in Knoxville and 26 to 63% in Mount Vernon after 36 months. FTIR analyses indicate that hydrolytic degradation of ester bonds occurred, and a significant reduction of molecular weight was observed. TGA and NMR confirmed degradation of biodegradable polymers. Our results indicate that biodegradable plastic mulches degrade in soil, but at different rates in different climates and that degradation occurs over several years. Faster degradation occurred in compost, making composting a viable disposal method, especially in cool climates, where mulch fragments in soil may persist for many years.


Subject(s)
Biodegradable Plastics , Composting , Soil , Soil Microbiology , Tennessee , Washington
3.
Sci Total Environ ; 675: 686-693, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31039503

ABSTRACT

Plastic is ubiquitous in modern life, but most conventional plastic is non-biodegradable and accumulates as waste after use. Biodegradable plastic is a promising alternative to conventional plastic. However, biodegradable plastics must be thoroughly evaluated to ensure that they undergo complete degradation and have no adverse impact on the environment. We evaluated the degradation of biodegradable plastics during 18-week full-scale composting, and determined whether additives from the plastics are released upon degradation. Two biodegradable plastic films-one containing polybutylene co-adipate co-terephthalate (PBAT) and the other containing polylactic acid/poly-hydroxy-alkanoate (PLA/PHA)-were placed into meshbags and buried in the compost. Degradation was assessed by image analysis, scanning electron microscopy, Fourier-transformed infrared spectroscopy, electrophoretic mobility, δ13C isotope analyses, and single particle mass spectrometry of mulch fragments. The results showed >99% macroscopic degradation of PLA/PHA and 97% for PBAT film. Polymers in the biodegradable films degraded; however, micro- and nanoparticles, most likely carbon black, were observed on the meshbags. Overall, biodegradable plastics hold promise, but the release of micro- and nanoparticles from biodegradable plastic upon degradation warrants additional investigation and calls for longer field testing to ensure that either complete biodegradation occurs or that no long-term harm to the environment is caused.


Subject(s)
Biodegradable Plastics/analysis , Biodegradation, Environmental , Composting , Nanoparticles/analysis , Polyesters
4.
Cell Host Microbe ; 21(2): 156-168, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28132837

ABSTRACT

Independently evolved pathogen effectors from three branches of life (ascomycete, eubacteria, and oomycete) converge onto the Arabidopsis TCP14 transcription factor to manipulate host defense. However, the mechanistic basis for defense control via TCP14 regulation is unknown. We demonstrate that TCP14 regulates the plant immune system by transcriptionally repressing a subset of the jasmonic acid (JA) hormone signaling outputs. A previously unstudied Pseudomonas syringae (Psy) type III effector, HopBB1, interacts with TCP14 and targets it to the SCFCOI1 degradation complex by connecting it to the JA signaling repressor JAZ3. Consequently, HopBB1 de-represses the TCP14-regulated subset of JA response genes and promotes pathogen virulence. Thus, HopBB1 fine-tunes host phytohormone crosstalk by precisely manipulating part of the JA regulon to avoid pleiotropic host responses while promoting pathogen proliferation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Bacterial Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclopentanes/metabolism , Host-Pathogen Interactions/genetics , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Immunity/genetics , Promoter Regions, Genetic , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Nicotiana/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...