Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 135(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36468336

ABSTRACT

Mammary epithelium is a bilayered ductal network composed of luminal and basal epithelial cells, which together drive the growth and functional differentiation of the gland. Basal mammary epithelial cells (MECs) exhibit remarkable plasticity and progenitor activity that facilitate epithelial expansion. However, their activity must be tightly regulated to restrict excess basal cell activity. Here, we show that adhesion of basal cells to laminin α5-containing basement membrane matrix, which is produced by luminal cells, presents such a control mechanism. Adhesion to laminin α5 directs basal cells towards a luminal cell fate, and thereby results in a marked decrease of basal MEC progenitor activity in vitro and in vivo. Mechanistically, these effects are mediated through ß4-integrin and activation of p21 (encoded by CDKN1A). Thus, we demonstrate that laminin matrix adhesion is a key determinant of basal identity and essential to building and maintaining a functional multicellular epithelium.


Subject(s)
Epithelial Cells , Laminin , Epithelium , Basement Membrane , Integrin beta4
2.
Sci Adv ; 8(41): eabm1847, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36240269

ABSTRACT

Niche-derived factors regulate tissue stem cells, but apart from the mechanosensory pathways, the effect of niche geometry is not well understood. We used organoids and bioengineered tissue culture platforms to demonstrate that the conical shape of Lgr5+ small intestinal stem cells (ISCs) facilitate their self-renewal and function. Inhibition of non-muscle myosin II (NM II)-driven apical constriction altered ISC shape and reduced niche curvature and stem cell capacity. Niche curvature is decreased in aged mice, suggesting that suboptimal interactions between old ISCs and their niche develop with age. We show that activation of NM IIC or physical restriction to young topology improves in vitro regeneration by old epithelium. We propose that the increase in lateral surface area of ISCs induced by apical constriction promotes interactions between neighboring cells, and the curved topology of the intestinal niche has evolved to maximize signaling between ISCs and neighboring cells.

3.
Methods Mol Biol ; 2471: 1-18, 2022.
Article in English | MEDLINE | ID: mdl-35175589

ABSTRACT

Mammary gland development starts during embryogenesis, and the process continues after birth. During development, the mammary gland undergoes massive morphological and physiological alterations including growth, invasion, and branching morphogenesis providing an ideal model for stem cell and cancer biology studies. Great efforts have been made in understanding mammary gland development during puberty and adulthood; however, the process during embryogenesis is still elusive. One reason is that the tools to study tissue dynamics during development are limited, which is partially due to the lack of an ex vivo culture method. Here we describe an updated organ culture protocol of the murine embryonic mammary gland. This powerful tool allows monitoring of growth and branching morphogenesis of mammary gland ex vivo by live imaging. In addition, we introduce a novel method for culturing intact, stroma-free mammary rudiments from late gestation mouse embryos in 3D in Matrigel. This approach can be used to identify the direct stromal cues for branching morphogenesis.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Animals , Female , Mice , Morphogenesis , Organ Culture Techniques , Pregnancy
4.
Nat Cell Biol ; 24(2): 148-154, 2022 02.
Article in English | MEDLINE | ID: mdl-35165416

ABSTRACT

Metabolic characteristics of adult stem cells are distinct from their differentiated progeny, and cellular metabolism is emerging as a potential driver of cell fate conversions1-4. How these metabolic features are established remains unclear. Here we identified inherited metabolism imposed by functionally distinct mitochondrial age-classes as a fate determinant in asymmetric division of epithelial stem-like cells. While chronologically old mitochondria support oxidative respiration, the electron transport chain of new organelles is proteomically immature and they respire less. After cell division, selectively segregated mitochondrial age-classes elicit a metabolic bias in progeny cells, with oxidative energy metabolism promoting differentiation in cells that inherit old mitochondria. Cells that inherit newly synthesized mitochondria with low levels of Rieske iron-sulfur polypeptide 1 have a higher pentose phosphate pathway activity, which promotes de novo purine biosynthesis and redox balance, and is required to maintain stemness during early fate determination after division. Our results demonstrate that fate decisions are susceptible to intrinsic metabolic bias imposed by selectively inherited mitochondria.


Subject(s)
Adult Stem Cells/metabolism , Cell Differentiation , Cell Lineage , DNA, Mitochondrial/genetics , Energy Metabolism , Genes, Mitochondrial , Mammary Glands, Human/metabolism , Mitochondria/metabolism , Animals , Cell Line , Cell Proliferation , Cellular Senescence , Female , Humans , Mammary Glands, Human/cytology , Metabolome , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/genetics , Phenotype , Proteome
5.
EMBO Rep ; 22(11): e52532, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34515392

ABSTRACT

Transforming growth factor-beta (TGFß) is a multifunctional cytokine with a well-established role in mammary gland development and both oncogenic and tumor-suppressive functions. The extracellular matrix (ECM) indirectly regulates TGFß activity by acting as a storage compartment of latent-TGFß, but how TGFß is released from the ECM via proteolytic mechanisms remains largely unknown. In this study, we demonstrate that hepsin, a type II transmembrane protease overexpressed in 70% of breast tumors, promotes canonical TGFß signaling through the release of latent-TGFß from the ECM storage compartment. Mammary glands in hepsin CRISPR knockout mice showed reduced TGFß signaling and increased epithelial branching, accompanied by increased levels of fibronectin and latent-TGFß1, while overexpression of hepsin in mammary tumors increased TGFß signaling. Cell-free and cell-based experiments showed that hepsin is capable of direct proteolytic cleavage of fibronectin but not latent-TGFß and, importantly, that the ability of hepsin to activate TGFß signaling is dependent on fibronectin. Altogether, this study demonstrates a role for hepsin as a regulator of the TGFß pathway in the mammary gland via a novel mechanism involving proteolytic downmodulation of fibronectin.


Subject(s)
Fibronectins , Transforming Growth Factor beta , Animals , Fibronectins/metabolism , Mice , Proteolysis , Serine Endopeptidases/genetics , Transforming Growth Factor beta/metabolism
6.
Development ; 148(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34128985

ABSTRACT

Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin α5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation.


Subject(s)
Cell Differentiation/genetics , Epithelium/metabolism , Laminin/genetics , Mammary Glands, Animal/metabolism , Signal Transduction , Wnt4 Protein/genetics , Animals , Biomarkers , Epithelial Cells , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental , Immunohistochemistry , Laminin/metabolism , Mammary Glands, Animal/embryology , Mice , Models, Biological , Morphogenesis/genetics , Organogenesis/genetics , Wnt4 Protein/metabolism
7.
Nature ; 594(7863): 430-435, 2021 06.
Article in English | MEDLINE | ID: mdl-34079124

ABSTRACT

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Subject(s)
Cell Competition , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Esterases/metabolism , Genes, APC , Mutation , Adenoma/genetics , Adenoma/pathology , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Competition/genetics , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Culture Media, Conditioned , Disease Progression , Esterases/antagonists & inhibitors , Esterases/genetics , Female , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/metabolism , Organoids/pathology , Stem Cells/cytology , Stem Cells/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway
8.
Cancer Res ; 81(6): 1513-1527, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33461973

ABSTRACT

Ras proteins play a causal role in human cancer by activating multiple pathways that promote cancer growth and invasion. However, little is known about how Ras induces the first diagnostic features of invasion in solid tumors, including loss of epithelial integrity and breaching of the basement membrane (BM). In this study, we found that oncogenic Ras strongly promotes the activation of hepsin, a member of the hepsin/TMPRSS type II transmembrane serine protease family. Mechanistically, the Ras-dependent hepsin activation was mediated via Raf-MEK-ERK signaling, which controlled hepsin protein stability through the heat shock transcription factor-1 stress pathway. In Ras-transformed three-dimensional mammary epithelial culture, ablation of hepsin restored desmosomal cell-cell junctions, hemidesmosomes, and BM integrity and epithelial cohesion. In tumor xenografts harboring mutant KRas, silencing of hepsin increased local invasion concomitantly with accumulation of collagen IV. These findings suggest that hepsin is a critical protease for Ras-dependent tumorigenesis, executing cell-cell and cell-matrix pathologies important for early tumor dissemination. SIGNIFICANCE: These findings identify the cell-surface serine protease hepsin as a potential therapeutic target for its role in oncogenic Ras-mediated deregulation of epithelial cell-cell and cell-matrix interactions and cohesion of epithelial structure.


Subject(s)
Breast Neoplasms/pathology , Epithelial Cells/pathology , Heat Shock Transcription Factors/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Serine Endopeptidases/metabolism , Animals , Basement Membrane/cytology , Basement Membrane/pathology , Breast/pathology , Breast Neoplasms/genetics , Carcinogenesis/pathology , Cell Communication , Cell Line, Tumor , Collagen Type IV/metabolism , Desmosomes/pathology , Epithelial Cells/cytology , Female , Gene Knockdown Techniques , Heat Shock Transcription Factors/genetics , Humans , MAP Kinase Signaling System/genetics , Mammary Glands, Animal/cytology , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Mutation , Neoplasm Invasiveness/pathology , Primary Cell Culture , Protein Stability , Proto-Oncogene Proteins p21(ras)/genetics , Serine Endopeptidases/genetics , Up-Regulation , Xenograft Model Antitumor Assays
9.
Breast Cancer Res ; 20(1): 102, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180882

ABSTRACT

The European Network for Breast Development and Cancer (ENBDC), a worldwide network ( http://www.enbdc.org/ ), celebrated its tenth anniversary with a fantastic meeting last March 15-17, 2018 in Weggis with 76 attendees.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Breast/diagnostic imaging , Mammary Glands, Human/diagnostic imaging , Research Personnel/statistics & numerical data , Biomedical Research/methods , Biomedical Research/trends , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...