Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 12(2): e8594, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222966

ABSTRACT

The marine ecosystems are under severe climate change-induced stress globally. The Baltic Sea is especially vulnerable to ongoing changes, such as warming. The aim of this study was to measure eco-physiological responses of a key copepod species to elevated temperature in an experiment, and by collecting field samples in the western Gulf of Finland. The potential trade-off between reproductive output and oxidative balance in copepods during thermal stress was studied by incubating female Acartia sp. for reproduction rate and oxidative stress measurements in ambient and elevated temperatures. Our field observations show that the glutathione cycle had a clear response in increasing stress and possibly had an important role in preventing oxidative damage: Lipid peroxidation and ratio of reduced and oxidized glutathione were negatively correlated throughout the study. Moreover, glutathione-s-transferase activated in late July when the sea water temperature was exceptionally high and Acartia sp. experienced high oxidative stress. The combined effect of a heatwave, increased cyanobacteria, and decreased dinoflagellate abundance may have caused larger variability in reproductive output in the field. An increase of 7°C had a negative effect on egg production rate in the experiment. However, the effect on reproduction was relatively small, implying that Acartia sp. can tolerate warming at least within the temperature range of 9-16°C. However, our data from the experiment suggest a link between reproductive success and oxidative stress during warming, shown as a significant combined effect of temperature and catalase on egg production rate.

2.
Ecol Evol ; 11(9): 4035-4045, 2021 May.
Article in English | MEDLINE | ID: mdl-33976792

ABSTRACT

Benthic species and communities are linked to pelagic zooplankton through life-stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state-space models to long (1966-2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment-dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.

3.
Ecol Evol ; 10(20): 11591-11606, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144986

ABSTRACT

Functional traits are becoming more common in the analysis of marine zooplankton community dynamics associated with environmental change. We used zooplankton groups with common functional properties to assess long-term trends in the zooplankton caused by certain environmental conditions in a highly eutrophicated gulf.Time series of zooplankton traits have been collected since the 1960s in the Gulf of Riga, Baltic Sea, and were analyzed using a combination of multivariate methods (principal coordinate analysis) and generalized additive models.One of the most significant changes was the considerable increase in the amount of the zooplankton functional groups (FGR) in coastal springtime communities, and dominance shifts from more complex to simpler organism groups-cladocerans and rotifers.The results also show that functional trait organism complexity (body size) decreased considerably due to cladoceran and rotifer increase following elevated water temperature. Salinity and oxygen had negligible effects on the zooplankton community.

4.
Sci Total Environ ; 745: 140600, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32717595

ABSTRACT

We collected samples for oxidative stress and antioxidants in a high CO2 mesocosm experiment for two weeks, focussing on two common crustacean copepods Calanus finmarchicus and Temora longicornis. The samples were collected during a field experiment campaign studying responses of plankton communities to future ocean acidification (OA), off the Norwegian coast south of Bergen. The main results showed that there were species-specific differences between Temora and Calanus, especially in antioxidant defences (glutathione system) and oxidative stress (lipid peroxidation and reduced:oxidised glutathione ratio). Regular monitoring of chlorophyll a and jellyfish abundances taking place during the field campaign revealed that both chl a and predators may have affected the eco-physiological response. Antioxidant and oxidative stress levels are known to respond sensitively to both the food quality and quantity and the predator pressure, apart from environmental (i.e., abiotic) changes. Calanus was more robust towards OA, perhaps due to its high tolerance to a wide range of vertical physical-chemical conditions. Both top-down and bottom-up factors seem to play a role for the outcome of copepod responses to future ocean acidification.


Subject(s)
Copepoda , Animals , Antioxidants , Carbon Dioxide/toxicity , Chlorophyll A , Hydrogen-Ion Concentration , Norway , Oxidative Stress , Seawater
5.
J Plankton Res ; 41(6): 925-938, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31920210

ABSTRACT

Abiotic variables subject to global change are known to affect plankton biomasses, and these effects can be species-specific. Here, we investigate the environmental drivers of annual biomass using plankton data from the Gulf of Finland in the northern Baltic Sea, spanning years 1993-2016. We estimated annual biomass time-series of 31 nanoplankton and microplankton species and genera from day-level data, accounting for the average phenology and wind. We found wind effects on day-level biomass in 16 taxa. We subsequently used state-space models to connect the annual biomass changes with potential environmental drivers (temperature, salinity, stratification, ice cover and inorganic nutrients), simultaneously accounting for temporal trends. We found clear environmental effects influencing the annual biomasses of Dinobryon faculiferum, Eutreptiella spp., Protoperidinium bipes, Pseudopedinella spp., Snowella spp. and Thalassiosira baltica and indicative effects in 10 additional taxa. These effects mostly concerned temperature, salinity or stratification. Together, these 16 taxa represent two-thirds of the summer biomass in the sampled community. The inter-annual variability observed in salinity and temperature is relatively low compared to scenarios of predicted change in these variables. Therefore, the potential impacts of the presented effects on plankton biomasses are considerable.

6.
PLoS One ; 13(4): e0195981, 2018.
Article in English | MEDLINE | ID: mdl-29652897

ABSTRACT

On a daily basis, planktonic organisms migrate vertically and thus experience widely varying conditions in their physico-chemical environment. In the Gulf of Finland, these changes are larger than values predicted by climate change scenarios predicted for the next century (up to 0.5 units in pH and 5°C in temperature). In this work, we are interested in how temporal variations in physico-chemical characteristics of the water column on a daily and weekly scale influence oxidative stress level and antioxidant responses in the planktonic copepod of the genus Acartia. Responses were determined from samples collected during a two-week field survey in the western Gulf of Finland, Baltic Sea. Our results showed that GST (Glutathione-S-transferase) enzyme activity increased in the surface waters between Weeks I and II, indicating antioxidant defense mechanism activation. This is most likely due to elevating temperature, pH, and dissolved oxygen observed between these two weeks. During Week II also GSSG (oxidized glutathione) was detected, indicating that copepods responded to stressor(s) in the environment. Our results suggest that Acartia copepods seem fairly tolerant to weekly fluctuations in environmental conditions in coastal and estuarine areas, in terms of antioxidant defense and oxidative stress. This could be directly connected to a very efficient glutathione cycling system acting as antioxidant defense system for neutralizing ROS and avoiding elevated levels of LPX.


Subject(s)
Antioxidants/metabolism , Copepoda/physiology , Disease Resistance , Environment , Oxidative Stress , Animals , Oxygen/metabolism , Reactive Oxygen Species
7.
Environ Monit Assess ; 189(4): 147, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28275983

ABSTRACT

We studied changes in sea water pH, temperature and salinity with focus on two depth layers, along the Gulf of Finland (the Baltic Sea) using long-term monitoring data from 1979 to 2015. Data from the most frequently sampled monitoring stations between western and eastern Gulf of Finland were used. The main result of the study reveals that pH has decreased both in surface and deep-water in the western Gulf of Finland with values ranging between -0.005 and -0.008 units year-1. We also demonstrate a rise in temperature (~2 °C) and decrease in salinity (~-0.7 g kg-1) at several stations over the last 36 years. In general, the changes are shown to be more pronounced in the western part of the gulf. This paper also stresses the importance of improving the sampling frequency and quality of monitoring measurements.


Subject(s)
Environmental Monitoring , Seawater/chemistry , Baltic States , Finland , Hydrogen-Ion Concentration , Oceans and Seas , Salinity
8.
PLoS One ; 10(6): e0128904, 2015.
Article in English | MEDLINE | ID: mdl-26042598

ABSTRACT

Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.


Subject(s)
Allelopathy , Cyanobacteria/growth & development , Intracellular Space/metabolism , Microcystins/biosynthesis , Salinity , Biomass , Cyanobacteria/metabolism , Finland , Linear Models , Seasons , Species Specificity
9.
PLoS One ; 9(11): e112692, 2014.
Article in English | MEDLINE | ID: mdl-25409500

ABSTRACT

It is commonly accepted that summer cyanobacterial blooms cannot be efficiently utilized by grazers due to low nutritional quality and production of toxins; however the evidence for such effects in situ is often contradictory. Using field and experimental observations on Baltic copepods and bloom-forming diazotrophic filamentous cyanobacteria, we show that cyanobacteria may in fact support zooplankton production during summer. To highlight this side of zooplankton-cyanobacteria interactions, we conducted: (1) a field survey investigating linkages between cyanobacteria, reproduction and growth indices in the copepod Acartia tonsa; (2) an experiment testing relationships between ingestion of the cyanobacterium Nodularia spumigena (measured by molecular diet analysis) and organismal responses (oxidative balance, reproduction and development) in the copepod A. bifilosa; and (3) an analysis of long term (1999-2009) data testing relationships between cyanobacteria and growth indices in nauplii of the copepods, Acartia spp. and Eurytemora affinis, in a coastal area of the northern Baltic proper. In the field survey, N. spumigena had positive effects on copepod egg production and egg viability, effectively increasing their viable egg production. By contrast, Aphanizomenon sp. showed a negative relationship with egg viability yet no significant effect on the viable egg production. In the experiment, ingestion of N. spumigena mixed with green algae Brachiomonas submarina had significant positive effects on copepod oxidative balance, egg viability and development of early nauplial stages, whereas egg production was negatively affected. Finally, the long term data analysis identified cyanobacteria as a significant positive predictor for the nauplial growth in Acartia spp. and E. affinis. Taken together, these results suggest that bloom forming diazotrophic cyanobacteria contribute to feeding and reproduction of zooplankton during summer and create a favorable growth environment for the copepod nauplii.


Subject(s)
Copepoda/physiology , Cyanobacteria/physiology , Eutrophication , Animals , Atlantic Ocean , Copepoda/growth & development , Data Collection , Genetic Fitness , Laboratories , Reproduction , Time Factors
10.
Ecol Evol ; 3(13): 4548-57, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24340194

ABSTRACT

Zooplankton are an important link between primary producers and fish. Therefore, it is crucial to address their responses when predicting effects of climate change on pelagic ecosystems. For realistic community-level predictions, several biotic and abiotic climate-related variables should be examined in combination. We studied the combined effects of ocean acidification and global warming predicted for year 2100 with toxic cyanobacteria on the calanoid copepod, Acartia bifilosa. Acidification together with higher temperature reduced copepod antioxidant capacity. Higher temperature also decreased egg viability, nauplii development, and oxidative status. Exposure to cyanobacteria and its toxin had a negative effect on egg production but, a positive effect on oxidative status and egg viability, giving no net effects on viable egg production. Additionally, nauplii development was enhanced by the presence of cyanobacteria, which partially alleviated the otherwise negative effects of increased temperature and decreased pH on the copepod recruitment. The interactive effects of temperature, acidification, and cyanobacteria on copepods highlight the importance of testing combined effects of climate-related factors when predicting biological responses.

11.
PLoS One ; 8(6): e66475, 2013.
Article in English | MEDLINE | ID: mdl-23776676

ABSTRACT

Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades.


Subject(s)
Climate Change , Eutrophication/physiology , Food Chain , Plankton/growth & development , Seasons , Animals , Baltic States , Oceans and Seas , Population Dynamics , Salinity , Seawater/chemistry , Species Specificity , Temperature
12.
PLoS One ; 7(10): e48538, 2012.
Article in English | MEDLINE | ID: mdl-23119052

ABSTRACT

Acidification of the seas, caused by increased dissolution of CO(2) into surface water, and global warming challenge the adaptation mechanisms of marine organisms. In boreal coastal environments, temperature and pH vary greatly seasonally, but sometimes also rapidly within hours due to upwelling events. We studied if copepod zooplankton living in a fluctuating environment are tolerant to climate change effects predicted for 2100, i.e., a temperature increase of 3°C and a pH decrease of 0.4. Egg production of the copepod Acartia sp. was followed over five consecutive days at four temperature and pH conditions (17°C/ambient pH; 17°C/low pH; 20°C/ambient pH; 20°C/low pH). Egg production was higher in treatments with warmer temperature but the increase was smaller when copepods were simultaneously exposed to warmer temperature and lowered pH. To reveal if maternal effects are important in terms of adaptation to a changing environment, we conducted an egg transplantation experiment, where the produced eggs were moved to a different environment and egg hatching was monitored for three days. When pH changed between the egg production and hatching conditions, it resulted in lower hatching success, but the effect was diminished over the course of the experiment possibly due to improved maternal provisioning. Warmer egg production temperature induced a positive maternal effect and increased the egg hatching rate. Warmer hatching temperature resulted also in earlier hatching. However, the temperature effects appear to be dependent on the ambient sea temperature. Our preliminary results indicate that maternal effects are an important mechanism in the face of environmental change.


Subject(s)
Adaptation, Physiological , Copepoda/physiology , Temperature , Analysis of Variance , Animals , Female , Hydrogen-Ion Concentration , Maternal Exposure , Models, Statistical , Oceans and Seas , Reproduction , Seawater , Zooplankton/physiology
13.
Mar Drugs ; 9(9): 1625-1648, 2011.
Article in English | MEDLINE | ID: mdl-22131962

ABSTRACT

Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.


Subject(s)
Ecosystem , Plankton/chemistry , Animals , Phytoplankton/chemistry , Phytoplankton/physiology , Plankton/physiology , Zooplankton/chemistry , Zooplankton/physiology
14.
Ambio ; 36(2-3): 195-202, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17520934

ABSTRACT

Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.


Subject(s)
Cyanobacteria/growth & development , Ecosystem , Food Contamination , Larva/drug effects , Marine Toxins , Seawater/microbiology , Alkaloids/chemistry , Alkaloids/metabolism , Alkaloids/toxicity , Animals , Baltic States , Carbon/chemistry , Carbon/metabolism , Cyanobacteria/chemistry , Cyanobacteria/pathogenicity , Environmental Monitoring , Fishes , Larva/growth & development , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Marine Toxins/chemistry , Marine Toxins/metabolism , Marine Toxins/toxicity , Nodularia/chemistry , Nodularia/metabolism , Nodularia/pathogenicity , Organic Chemicals/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/toxicity , Time Factors , Zooplankton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...