Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nucl Med Biol ; 136-137: 108925, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38796924

ABSTRACT

BACKGROUND: Targeted radionuclide therapy is established as a highly effective strategy for the treatment of metastatic tumors; however, the co-development of suitable imaging companions to therapy remains significant challenge. Theranostic isotopes of terbium (149Tb, 152Tb, 155Tb, 161Tb) have the potential to provide chemically identical radionuclidic pairs, which collectively encompass all modes of nuclear decay relevant to nuclear medicine. Herein, we report the first radiochemistry and preclinical studies involving 155Tb- and 161Tb-labeled crown-αMSH, a small peptide-based bioconjugate suitable for targeting melanoma. METHODS: 155Tb was produced via proton induced spallation of Ta targets using the isotope separation and acceleration facility at TRIUMF with isotope separation on-line (ISAC/ISOL). The radiolabeling characteristics of crown-αMSH with 155Tb and/or 161Tb were evaluated by concentration-dependence radiolabeling studies, and radio-HPLC stability studies. LogD7.4 measurements were obtained for [161Tb]Tb-crown-αMSH. Competitive binding assays were undertaken to determine the inhibition constant for [natTb]Tb-crown-αMSH in B16-F10 cells. Pre-clinical biodistribution and SPECT/CT imaging studies of 155Tb and 161Tb labeled crown-αMSH were undertaken in male C57Bl/6 J mice bearing B16-F10 melanoma tumors to evaluate tumor specific uptake and imaging potential for each radionuclide. RESULTS: Quantitative radiolabeling of crown-αMSH with [155Tb]Tb3+ and [161Tb]Tb3+ was demonstrated under mild conditions (RT, 10 min) and low chelator concentrations; achieving high molar activities (23-29 MBq/nmol). Radio-HPLC studies showed [161Tb]Tb-crown-αMSH maintains excellent radiochemical purity in human serum, while gradual metabolic degradation is observed in mouse serum. Competitive binding assays showed the high affinity of [natTb]Tb-crown-αMSH toward MC1R. Two different methods for preparation of the [155Tb]Tb-crown-αMSH radiotracer were investigated and the impacts on the biodistribution profile in tumor bearing mice is compared. Preclinical in vivo studies of 155Tb- and 161Tb- labeled crown-αMSH were performed in parallel, in mice bearing B16-F10 tumors; where the biodistribution results showed similar tumor specific uptake (6.06-7.44 %IA/g at 2 h pi) and very low uptake in nontarget organs. These results were further corroborated through a series of single-photon emission computed tomography (SPECT) studies, with [155Tb]Tb-crown-αMSH and [161Tb]Tb-crown-αMSH showing comparable uptake profiles and excellent image contrast. CONCLUSIONS: Collectively, our studies highlight the promising characteristics of [155Tb]Tb-crown-αMSH and [161Tb]Tb-crown-αMSH as theranostic pair for nuclear imaging (155Tb) and radionuclide therapy (161Tb).

2.
J Med Chem ; 66(19): 13705-13730, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37738446

ABSTRACT

Superior bifunctional chelating ligands, which can sequester both α-emitting radionuclides (225Ac, 213Bi) and their diagnostic companions (155Tb, 111In), remain a formidable challenge to translating targeted alpha therapy, with complementary diagnostic imaging, to the clinic. H4noneupaX, a chelating ligand with an unusual diametrically opposed arrangement of pendant donor groups, has been developed to this end. H4noneunpaX preferentially complexes Ln3+ and An3+ ions, forming thermodynamically stable (pLa = 17.8, pLu = 21.3) and kinetically inert complexes─single isomeric species by nuclear magnetic resonance and density functional theory. Metal binding versatility demonstrated in radiolabeling [111In]In3+, [155Tb]Tb3+, [177Lu]Lu3+, and [225Ac]Ac3+ achieved high molar activities under mild conditions. Efficient, scalable synthesis enabled in vivo evaluation of bifunctional H4noneunpaX conjugated to two octreotate peptides targeting neuroendocrine tumors. Single photon emission computed tomography/CT and biodistribution studies of 155Tb-radiotracers in AR42J tumor-bearing mice showed excellent image contrast, good tumor uptake, and high in vivo stability. H4noneunpaX shows significant potential for theranostic applications involving 225Ac/155Tb or 177Lu/155Tb.

3.
EJNMMI Radiopharm Chem ; 8(1): 9, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147500

ABSTRACT

BACKGROUND: The radionuclide Ga-68 is commonly used in nuclear medicine, specifically in positron emission tomography (PET). Recently, the interest in producing Ga-68 by cyclotron irradiation of [68Zn]Zn nitrate liquid targets is increasing. However, current purification methods of Ga-68 from the target solution consist of multi-step procedures, thus, leading to a significant loss of activity through natural decay. Additionally, several processing steps are needed to recycle the costly, enriched target material. RESULTS: To eventually allow switching from batch to continuous production, conventional batch extraction and membrane-based microfluidic extraction were compared. In both approaches, Ga-68 was extracted using N-benzoyl-N-phenylhydroxylamine in chloroform as the organic extracting phase. Extraction efficiencies of up to 99.5% ± 0.6% were achieved within 10 min, using the batch approach. Back-extraction of Ga-68 into 2 M HCl was accomplished within 1 min with efficiencies of up to 94.5% ± 0.6%. Membrane-based microfluidic extraction achieved 99.2% ± 0.3% extraction efficiency and 95.8% ± 0.8% back-extraction efficiency into 6 M HCl. When executed on a solution irradiated with a 13 MeV cyclotron at TRIUMF, Canada, comparable efficiencies of 97.0% ± 0.4% were achieved. Zn contamination in the back-extracted Ga-68 solution was found to be below 3 ppm. CONCLUSIONS: Microfluidic solvent extraction is a promising method in the production of Ga-68 achieving high efficiencies in a short amount of time, potentially allowing for direct target recycling.

4.
Molecules ; 28(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37049918

ABSTRACT

Terbium radioisotopes (149Tb, 152Tb, 155Tb, 161Tb) offer a unique class of radionuclides which encompass all four medicinally relevant nuclear decay modalities (α, ß+, γ, ß-/e-), and show high potential for the development of element-matched theranostic radiopharmaceuticals. The goal of this study was to design, synthesise, and evaluate the suitability of crown-TATE as a new peptide-conjugate for radiolabelling of [155Tb]Tb3+ and [161Tb]Tb3+, and to assess the imaging and pharmacokinetic properties of each radiotracer in tumour-bearing mice. [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE were prepared efficiently under mild conditions, and exhibited excellent stability in human serum (>99.5% RCP over 7 days). Longitudinal SPECT/CT images were acquired for 155Tb- and 161Tb- labelled crown-TATE in male NRG mice bearing AR42J tumours. The radiotracers, [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE, showed high tumour targeting (32.6 and 30.0 %ID/g, respectively) and minimal retention in non-target organs at 2.5 h post-administration. Biodistribution studies confirmed the SPECT/CT results, showing high tumour uptake (38.7 ± 8.0 %ID/g and 38.5 ± 3.5 %ID/g, respectively) and favourable tumour-to-background ratios. Blocking studies further confirmed SSTR2-specific tumour accumulation. Overall, these findings suggest that crown-TATE has great potential for element-matched molecular imaging and radionuclide therapy using 155Tb and 161Tb.


Subject(s)
Neuroendocrine Tumors , Male , Humans , Mice , Animals , Precision Medicine , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods , Radioisotopes/therapeutic use , Radiopharmaceuticals/pharmacokinetics
5.
Chemistry ; 29(5): e202202862, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36318597

ABSTRACT

The difluoromethyl group plays an important role in modern medicinal and agrochemistry. While several difluoromethylation reagents have been reported, these typically rely on difluoromethyl carbenes or anions, or target specific processes. Here, we describe a conceptually unique and general process for O-H, N-H and C-H difluoromethylation that involves the formation of a transient dithiole followed by facile desulfurative fluorination using silver(I) fluoride. We also introduce the 5,6-dimethoxy-1,3-benzodithiole (DMBDT) function, which undergoes sufficiently rapid desulfurative fluorination to additionally support 18 F-difluoromethylation. This new process is compatible with the wide range of functional groups typically encountered in medicinal chemistry campaigns, and the use of Ag18 F is demonstrated in the production of 18 F-labeled derivatives of testosterone, perphenazine, and melatonin, 58.0±2.2, 20.4±0.3 and 32.2±3.6 MBq µmol-1 , respectively. We expect that the DMBDT group and this 18 F/19 F-difluoromethylation process will inspire and support new efforts in medicinal chemistry, agrochemistry and radiotracer production.


Subject(s)
Chemistry, Pharmaceutical , Halogenation , Indicators and Reagents , Fluorides
6.
Nucl Med Biol ; 112-113: 35-43, 2022.
Article in English | MEDLINE | ID: mdl-35797877

ABSTRACT

Targeted Alpha Therapy (TAT) has shown very high potential for the treatment of cancers that were not responsive to other therapy options (e.g., ß- therapy and chemotherapy). The main constraint to the widespread use of TAT in clinics is the limited availability of alpha-emitting radionuclides. One of the most promising candidates for TAT is 225Ac (t1/2 = 9.92 days), which can be used directly in combination with selective biomolecules (e.g., antibodies, peptides, etc.) or be a generator source of 213Bi (t1/2 = 45.6 min), another shorter-lived TAT radionuclide. Several strategies are currently under investigation to increase the supply of 225Ac. One of the most attractive options is the irradiation of natural thorium-232 targets with high-energy protons (≥100 MeV). However, there are several challenges associated with this production method including the development of an efficient radiochemical purification method. During irradiation of natural thorium with proton energy above 100 MeV, several Ra isotopes (223,224,225Ra) are produced. 223Ra (t1/2 = 11.43 days) is used for the treatment of bone metastases and can also be used as a generator source for 211Pb. Additionally, 225Ra (t1/2 = 14.9 days) can be a valuable source of isotopically pure 225Ac. In the present work, we address the radiochemical separation aspects of isolating Ac and Ra isotopes from irradiated thorium targets.


Subject(s)
Protons , Thorium , Alpha Particles/therapeutic use , Lead , Radioisotopes/chemistry , Radioisotopes/therapeutic use , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use , Thorium/chemistry
7.
J Control Release ; 343: 347-360, 2022 03.
Article in English | MEDLINE | ID: mdl-35085699

ABSTRACT

Human insulin (HI) has fascinating metal-facilitated self-assembly properties that are essential for its biological function. HI has a natural Zn2+ binding site and we have previously shown that covalently attached abiotic ligands (e.g., bipyridine, terpyridine) can lead to the formation of nanosized oligomeric structures through the coordination of metal ions. Here we studied the hypothesis that metal ions can be used to directly control the pharmacokinetics of insulin after covalent attachment of an abiotic ligand that binds metal ions. We evaluated the pharmacokinetics (PK) and biodistribution of HI self-assemblies directed by metal ion coordination (i.e., Fe2+/Zn2+, Eu3+/Zn2+, Fe2+/Co3+) using preclinical SPECT/CT imaging and ex vivo gamma counting. HI was site-specifically modified with terpyridine (Tpy) at the PheB1 or LysB29 position to create conjugates that bind either Fe2+ or Eu3+, while its natural binding site (HisB10) preferentially coordinates with either Zn2+ or Co3+. HI was also functionalized with trans-cyclooctene (TCO) opposite to Tpy at PheB1 or LysB29, respectively, to allow for tetrazine-TCO coupling via a tetrazine-modified DTPA followed by 111In-radiolabeling for SPECT/CT imaging. When the 111In-B29Tpy-HI conjugate was coordinated with Fe2+/Zn2+, its retention at the injection site 6 h after injection was ~8-fold higher than the control without the metal ions, while its kidney accumulation was lower. 111In-B1Tpy-HI showed comparable retention at the injection site 6 h after injection and slightly increased retention at 24 h. However, higher kidney accumulation and residence time of degraded 111In-B1Tpy-HI was observed compared to that of 111In-B29Tpy-HI. Quantitative PK analysis based on SPECT/CT images confirmed slower distribution from the injection site of the HI-metal ion assemblies compared to control HI conjugates. Our results show that the Tpy-binding site (i.e., PheB1 or LysB29) on HI and its coordination with the added metal ions (i.e., Fe2+/Zn2+ or Fe2+/Co3+) directed the distribution half-life of HI significantly. This clearly indicates that the PK of insulin can be controlled by complexation with different metal ions.


Subject(s)
Insulin , Tomography, Emission-Computed, Single-Photon , Humans , Insulin/chemistry , Ions/chemistry , Kinetics , Ligands , Tissue Distribution , Tomography, X-Ray Computed
8.
Nucl Med Biol ; 104-105: 11-21, 2022.
Article in English | MEDLINE | ID: mdl-34839209

ABSTRACT

INTRODUCTION: Radiotherapy of cancer requires both alpha- and beta-particle emitting radionuclides, as these radionuclide types are efficient at destroying different types of tumors. Both classes of radionuclides require a vehicle, such as an antibody or a polymer, to be delivered and retained within the tumor. Polyglutamic acid (pGlu) is a polymer that has proven itself effective as a basis of drug-polymer conjugates in the clinic, while its derivatives have been used for pretargeted tumor imaging in a research setup. trans-Cyclooctene (TCO) modified pGlu is suitable for pretargeted imaging or therapy, as well as for intratumoral radionuclide therapy. In all cases, it becomes indirectly radiolabeled via the bioorthogonal click reaction with the tetrazine (Tz) molecule carrying the radionuclide. In this study, we report the radiolabeling of TCO-modified pGlu with either lutetium-177 (177Lu), a beta-particle emitter, or actinium-225 (225Ac), an alpha-particle emitter, using the click reaction between TCO and Tz. METHODS: A panel of Tz derivatives containing a metal ion binding chelator (DOTA or macropa) connected to the Tz moiety directly or through a polyethylene glycol (PEG) linker was synthesized and tested for their ability to chelate 177Lu and 225Ac, and click to pGlu-TCO. Radiolabeled 177Lu-pGlu and 225Ac-pGlu were isolated by size exclusion chromatography. The retention of 177Lu or 225Ac by the obtained conjugates was investigated in vitro in human serum. RESULTS: All DOTA-modified Tzs efficiently chelated 177Lu resulting in average radiochemical conversions (RCC) of >75%. Isolated radiochemical yields (RCY) for 177Lu-pGlu prepared from 177Lu-Tzs ranged from 31% to 55%. TLC analyses detected <5% unchelated 177Lu for all 177Lu-pGlu preparations over six days in human serum. For 225Ac chelation, optimized RCCs ranged from 61 ± 34% to quantitative for DOTA-Tzs and were quantitative for the macropa-modified Tz (>98%). Isolated radiochemical yields (RCY) for 225Ac-pGlu prepared from 225Ac-Tzs ranged from 28% to 51%. For 3 out of 5 225Ac-pGlu conjugates prepared from DOTA-Tzs, the amount of unchelated 225Ac stayed below 10% over six days in human serum, while 225Ac-pGlu prepared from macropa-Tz showed a steady release of up to 37% 225Ac. CONCLUSION: We labeled TCO-modified pGlu polymers with alpha- and beta-emitting radionuclides in acceptable RCYs. All 177Lu-pGlu preparations and some 225Ac-pGlu preparations showed excellent stability in human plasma. Our work shows the potential of pGlu as a vehicle for alpha- and beta-radiotherapy of tumors and demonstrated the usefulness of Tz ligation for indirect radiolabeling.


Subject(s)
Lutetium , Polymers , Animals , Cell Line, Tumor , Humans , Lutetium/chemistry , Lutetium/therapeutic use , Mice , Mice, Nude , Peptides , Radiochemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use
9.
Bioconjug Chem ; 29(11): 3923-3934, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30347973

ABSTRACT

Significant progress in the characterization of protein corona has been made. However, insights on how the corona affects the aggregation of nanoparticles (NPs) and consequent biological identity are still lacking. Here, we examined how the corona formed from four major serum proteins, immunoglobulin G (IgG), fibrinogen (FBG), apolipoprotein A1 (ApoA1), and human serum albumin (HSA), over a range of concentrations affects the aggregation of gold NPs (AuNPs). We found that at physiological pH of 7.4, all four proteins aggregated the AuNPs at low concentrations but conferred colloidal stability at high concentrations due to the complete "corona coat" around individual AuNPs. Due to their immune-related functions, IgG and FBG aggregated the AuNPs to a greater extent compared to HSA and ApoA1 which were mostly involved in transport of small molecules. We then introduced the AuNP-corona formed from each protein into an acidic solution at pH 6.2 with high ionic concentration for up to 24 h as a model of the tumor microenvironment to examine for changes in their aggregation. We observed that protein corona formation sterically stabilized the AuNP-corona for all four proteins, resulting in a smaller increase in aggregation and size compared to citrate-capped AuNPs. This was especially true for corona formed at high protein:AuNP ratios. Our study therefore showed that the formation of a complete "corona coat" around NPs at sufficiently high protein:NP ratio was required for colloidal stability of designed NP systems in both physiological and cancer microenvironment to maintain efficiency and efficacy in cancer drug delivery.


Subject(s)
Blood Proteins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Protein Corona/chemistry , Apolipoprotein A-I/chemistry , Citrates/chemistry , Colloids/chemistry , Dimerization , Fibrinogen/chemistry , Humans , Immunoglobulin G/chemistry , Metal Nanoparticles/ultrastructure , Particle Size , Serum Albumin, Human/chemistry
10.
Theranostics ; 8(21): 5828-5841, 2018.
Article in English | MEDLINE | ID: mdl-30613265

ABSTRACT

Long circulating liposomes entrapping iodinated and radioiodinated compounds offer a highly versatile theranostic platform. Here we report a new methodology for efficient and high-yield loading of such compounds into liposomes, enabling CT/SPECT/PET imaging and 131I-radiotherapy. Methods: The CT contrast agent diatrizoate was synthetically functionalized with a primary amine, which enabled its remote loading into PEGylated liposomes by either an ammonium sulfate- or a citrate-based pH transmembrane gradient. Further, the amino-diatrizoate was radiolabeled with either 124I (t1/2 = 4.18 days) for PET or 125I (t1/2 = 59.5 days) for SPECT, through an aromatic Finkelstein reaction. Results: Quantitative loading efficiencies (>99%) were achieved at optimized conditions. The 124I-labeled compound was remote-loaded into liposomes, with an overall radiolabeling efficiency of 77 ± 1%, and imaged in vivo in a CT26 murine colon cancer tumor model by PET/CT. A prolonged blood circulation half-life of 19.5 h was observed for the radiolabeled liposomes, whereas injections of the free compound were rapidly cleared. Lower accumulation was observed in the spleen, liver, kidney and tumor than what is usually seen for long-circulating liposomes. Conclusion: The lower accumulation was interpreted as release of the tracer from the liposomes within these organs after accumulation. These results may guide the design of systems for controlled release of remote loadable drugs from liposomes.


Subject(s)
Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/therapy , Contrast Media/administration & dosage , Liposomes/administration & dosage , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/administration & dosage , Radiotherapy/methods , Animals , Colonic Neoplasms/pathology , Diatrizoate/administration & dosage , Disease Models, Animal , Iodine Radioisotopes/administration & dosage , Mice , Theranostic Nanomedicine/methods
11.
Small ; 12(9): 1174-82, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26455731

ABSTRACT

At the nano-bio interface, human plasma differentially interacts with engineered nanomaterials through the creation of protein coronas, which in turn become primary determinants of both the pharmacokinetics and pharmacodynamics of circulating nanoparticles. Here, for the first time, the specific binding kinetics of the four major corona forming proteins (human serum albumin, fibrinogen, ApoA1, and polyclonal IgG) are determined for gold nanoparticles (AuNPs). Using a multiplexed surface plasmonic assay, highly reproducible measurements of on rate (k(on)), off rate (k(off)), and disassociation constant (K(D)), in addition to relative amounts of protein binding, are obtained. Dramatic differences in k(on) for individual components are shown as primary determinants of protein affinities, with k(on) ranging over nearly two orders of magnitude for the proteins studied, while k(off) remains within a factor of two for the set. The effect of polyethylene glycol (PEG) modification on plasma component binding is also studied and the effect of PEG length on human serum interaction is characterized through systematic screening of PEG molecular weight (2-30k). The effect of nanoparticle modification on particle targeting is also characterized through study of a hybrid AuNP system.


Subject(s)
Blood Proteins/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Protein Corona/chemistry , Surface Plasmon Resonance/methods , Humans , Kinetics , Microfluidics , Polyethylene Glycols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...