Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Pharmacol Toxicol Methods ; 123: 107270, 2023.
Article in English | MEDLINE | ID: mdl-37164235

ABSTRACT

The ICH E14/S7B Questions and Answers (Q&As) guideline introduces the concept of a "double negative" nonclinical scenario (negative hERG assay and negative in vivo QTc study) to demonstrate that a drug does not produce a clinically relevant QT prolongation (i.e., no QT liability). This nonclinical "double negative" data package, along with negative Phase 1 clinical QTc data, may be sufficient to substitute for a clinical Thorough QT (TQT) study in some specific cases. While standalone GLP in vivo cardiovascular studies in non-rodent species are standard practice during nonclinical drug development for small molecule programs, a variety of approaches to the design, conduct, analysis and interpretation are utilized across pharmaceutical companies and contract research organizations (CROs) that may, in some cases, negatively impact the stringent sensitivity needed to fulfill the new Q&As. Subject matter experts from both Pharma and CROs have collaborated to recommend best practices for more robust nonclinical cardiovascular telemetry studies in non-rodent species, with input from clinical and regulatory experts. The aim was to increase consistency and harmonization across the industry and to ensure delivery of high quality nonclinical QTc data to meet the proposed sensitivities defined within the revised ICH E14/S7B Q&As guideline (Q&As 5.1 and 6.1). The detailed best practice recommendations presented here cover the design and execution of the safety pharmacology cardiovascular study, including optimal methods for acquiring, analyzing, reporting, and interpreting the resulting QTc and pharmacokinetic data to allow for direct comparison to clinical exposures and assessment of safety margin for QTc prolongation.


Subject(s)
Cardiovascular System , Long QT Syndrome , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Telemetry , Electrocardiography
2.
Clin Transl Sci ; 16(3): 436-446, 2023 03.
Article in English | MEDLINE | ID: mdl-36369797

ABSTRACT

In prior clinical studies, levocetirizine (LEVO) has demonstrated no effect on ventricular repolarization (QTc intervals), therefore it is a relevant negative control to assess in nonclinical assays to define low proarrhythmic risk. LEVO was tested in beagle dog and cynomolgus monkey (nonhuman primate [NHP]) telemetry models to understand the nonclinical-clinical translation of this negative control. One oral dose of vehicle, LEVO (10 mg/kg/species) or moxifloxacin (MOXI; 30 mg/kg/dog; 80 mg/kg/NHP) was administered to instrumented animals (N = 8/species) using a cross-over dosing design; MOXI was the in-study positive control. Corrected QT interval values (QTcI) were calculated using an individual animal correction factor. Blood samples were taken for drug exposure during telemetry and for pharmacokinetic (PK) analysis (same animals; different day) for exposure-response (C-QTc) modeling. Statistical analysis of QTc-by-timepoint data showed that LEVO treatment was consistent with vehicle, thus no effect on ventricular repolarization was observed over 24 h in both species. PK analysis indicated that LEVO-maximum concentration levels in dogs (range: 12,300-20,100 ng/ml) and NHPs (range: 4090-12,700 ng/ml) were ≥4-fold higher than supratherapeutic drug levels in clinical QTc studies. Slope analysis values in dogs (0.00019 ms/ng/ml) and NHPs (0.00016 ms/ng/ml) were similar to the human C-QTc relationship and indicated no relationship between QTc intervals and plasma levels of LEVO. MOXI treatment caused QTc interval prolongation (dog: 18 ms; NHP: 29 ms). The characterization of LEVO in these non-rodent telemetry studies further demonstrates the value and impact of the in vivo QTc assay to define a "no QTc effect" profile and support clinical safety assessment.


Subject(s)
Fluoroquinolones , Long QT Syndrome , Humans , Dogs , Animals , Macaca fascicularis , Long QT Syndrome/chemically induced , Moxifloxacin , Telemetry
4.
Clin Transl Sci ; 14(6): 2379-2390, 2021 11.
Article in English | MEDLINE | ID: mdl-34173339

ABSTRACT

The in vivo correct QT (QTc) assay is used by the pharmaceutical industry to characterize the potential for delayed ventricular repolarization and is a core safety assay mentioned in International Conference on Harmonization (ICH) S7B guideline. The typical telemetry study involves a dose-response analysis of QTc intervals over time using a crossover (CO) design. This method has proven utility but does not include direct integration of pharmacokinetic (PK) data. An alternative approach has been validated and is used routinely in the clinical setting that pairs pharmacodynamic (PD) responses with PK exposure (e.g., concentration-QTc (C-QTc) analysis. The goal of our paper was to compare the QTc sensitivity of two experimental approaches in the conscious dog and non-human primate (NHP) QTc assays. For timepoint analysis, a conventional design using eight animals (8 × 4 CO) to detect moxifloxacin-induced QTc prolongation was compared to a PK/PD design in a subset (N = 4) of the same animals. The findings demonstrate that both approaches are equally sensitive in detecting threshold QTc prolongation on the order of 10 ms. Both QTc models demonstrated linearity in the QTc prolongation response to moxifloxacin dose escalation (6 to 46 ms). Further, comparison with human QTc findings with moxifloxacin showed agreement and consistent translation across the three species: C-QTc slope values were 0.7- (dog) and 1.2- (NHP) fold of the composite human value. In conclusion, our data show that dog and NHP QTc telemetry with an integrated PK arm (C-QTc) has the potential to supplement clinical evaluation and improve integrated QTc risk assessment.


Subject(s)
Long QT Syndrome/chemically induced , Moxifloxacin/administration & dosage , Telemetry , Animals , Cross-Over Studies , Dogs , Dose-Response Relationship, Drug , Electrocardiography , Primates
5.
J Pharmacol Toxicol Methods ; 109: 107067, 2021.
Article in English | MEDLINE | ID: mdl-33857614

ABSTRACT

The ICH S7B guideline describes the requirement to conduct an in vitro IKr (hERG) and in vivo QTc assay for human risk assessment of new drug products, but the guidance is devoid of recommendations on study execution or quality. In the absence of standard practice, multiple study designs and experimental approaches have been utilized, especially with the nonclinical QTc assay. Since 2009, our approach to the in vivo QTc assay has been consistent for small molecules and yields reproducible and sensitive levels for QTc signal detection. Our database and experience indicate that nonrodent telemetry studies can achieve high sensitivity and a calculated metric of study power can be used to indicate study quality. Using a retrospective statistical power analysis of multiple studies (n = 14 dog; n = 6 NHP), the detection sensitivity for a specific study design (N = 8; double Latin square cross-over) was determined. The output of the power analysis is the minimal detectable effect at 80% power and a 95% probability level. The design provided an average sensitivity to detect a 4.7 (2.0%) and 6.5 (1.9%) msec QTcI change in dog and NHP, respectively. These findings suggest that this experimental approach has a consistent and reproducible sensitivity to enable a robust QTcI risk evaluation and can be used confidently to support an integrated nonclinical-clinical pro-arrhythmia risk assessment. The inclusion of power analysis (i.e., QTc sensitivity) data in a regulatory submission provides key information to critical stakeholders about the quality of the in vivo QTc assessment and its value for human safety testing.


Subject(s)
Long QT Syndrome , Animals , Dogs , Electrocardiography , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Primates , Retrospective Studies , Telemetry
6.
Front Cardiovasc Med ; 8: 587149, 2021.
Article in English | MEDLINE | ID: mdl-33708802

ABSTRACT

Purpose: Doxorubicin-related heart failure has been recognized as a serious complication of cancer chemotherapy. This paper describes a cardiovascular safety pharmacology study with chronic dosing of doxorubicin in a non-human primate model designed to characterize the onset and magnitude of left ventricular dysfunction (LVD) using invasive and non-invasive methods. Methods: Cynomolgus monkeys (N = 12) were given repeated intravenous injections of doxorubicin over 135 days (19 weeks) with dosing holidays when there was evidence of significantly decreased hematopoiesis; a separate group (N = 12) received vehicle. Arterial and left ventricular pressure telemetry and cardiac imaging by echocardiography allowed regular hemodynamic assessments and determination of LVD. Blood samples were collected for hematology, clinical chemistry, and assessment of cardiac troponin (cTnI) and N-terminal pro b-type natriuretic peptide (NT-proBNP). Myocardial histopathology was a terminal endpoint. Results: There was variable sensitivity to the onset of treatment effects, for example 25% of doxorubicin-treated animals exhibited LVD (e.g., decreases in ejection fraction) following 50-63 days (cumulative dose: 8-9 mg/kg) on study. All animals deteriorated into heart failure with additional dosing 135 days (total cumulative dose: 11-17 mg/kg). Reductions in arterial pressure and cardiac contractility, as well as QTc interval prolongation, was evident following doxorubicin-treatment. Both cTnI and NT-proBNP were inconsistently higher at the end of the study in animals with LVD. Measurements collected from control animals were consistent and stable over the same time frame. Minimal to mild, multifocal, vacuolar degeneration of cardiomyocytes was observed in 7 of 12 animals receiving doxorubicin and 0 of 12 animals receiving vehicle. Conclusions: This repeat-dose study of doxorubicin treatment in the cynomolgus monkey demonstrated a clinically relevant pattern of progressive heart failure. Importantly, the study revealed how both telemetry and non-invasive echocardiography measurements could track the gradual onset of LVD.

7.
Clin Pharmacol Ther ; 109(2): 310-318, 2021 02.
Article in English | MEDLINE | ID: mdl-32866317

ABSTRACT

Defining an appropriate and efficient assessment of drug-induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc-prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14-based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B-based "double-negative" nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high-dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double-negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.


Subject(s)
Drugs, Investigational/adverse effects , Long QT Syndrome/chemically induced , Animals , Arrhythmias, Cardiac/chemically induced , Drug Development/methods , Drug Industry/methods , Electrocardiography/methods , Humans , Risk Assessment , Torsades de Pointes/chemically induced
8.
Regul Toxicol Pharmacol ; 115: 104697, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32590049

ABSTRACT

Romosozumab (EVENITY™ [romosozumab-aqqg in the US]) is a humanized monoclonal antibody that inhibits sclerostin and has been approved in several countries for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Sclerostin is expressed in bone and aortic vascular smooth muscle (AVSM). Its function in AVSM is unclear but it has been proposed to inhibit vascular calcification, atheroprogression, and inflammation. An increased incidence of positively adjudicated serious cardiovascular adverse events driven by an increase in myocardial infarction and stroke was observed in romosozumab-treated subjects in a clinical trial comparing alendronate with romosozumab (ARCH; NCT01631214) but not in a placebo-controlled trial (FRAME; NCT01575834). To investigate the effects of sclerostin inhibition with sclerostin antibody on the cardiovascular system, a comprehensive nonclinical toxicology package with additional cardiovascular studies was conducted. Although pharmacodynamic effects were observed in the bone, there were no functional, morphological, or transcriptional effects on the cardiovascular system in animal models in the presence or absence of atherosclerosis. These nonclinical studies did not identify evidence that proves the association between sclerostin inhibition and adverse cardiovascular function, increased cardiovascular calcification, and atheroprogression.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Bone Density Conservation Agents/pharmacology , Cardiovascular System/drug effects , Animals , Antibodies, Monoclonal/therapeutic use , Bone Density Conservation Agents/therapeutic use , Drug Evaluation, Preclinical , Female , Fractures, Bone/prevention & control , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Osteoporosis/drug therapy , Rats, Sprague-Dawley , Risk
9.
Front Pharmacol ; 10: 934, 2019.
Article in English | MEDLINE | ID: mdl-31555128

ABSTRACT

Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.

10.
Front Pharmacol ; 10: 884, 2019.
Article in English | MEDLINE | ID: mdl-31447679

ABSTRACT

Drug-induced effects on cardiac contractility can be assessed through the measurement of the maximal rate of pressure increase in the left ventricle (LVdP/dtmax) in conscious animals, and such studies are often conducted at the late stage of preclinical drug development. Detection of such effects earlier in drug research using simpler, in vitro test systems would be a valuable addition to our strategies for identifying the best possible drug development candidates. Thus, testing platforms with reasonably high throughput, and affordable costs would be helpful for early screening purposes. There may also be utility for testing platforms that provide mechanistic information about how a given drug affects cardiac contractility. Finally, there could be in vitro testing platforms that could ultimately contribute to the regulatory safety package of a new drug. The characteristics needed for a successful cell or tissue-based testing platform for cardiac contractility will be dictated by its intended use. In this article, general considerations are presented with the intent of guiding the development of new testing platforms that will find utility in drug research and development. In the following article (part 2), specific aspects of using human-induced stem cell-derived cardiomyocytes for this purpose are addressed.

11.
Transl Oncol ; 12(10): 1296-1304, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330495

ABSTRACT

Off-target activities of drug candidates observed during in vitro pharmacological profiling frequently do not translate to adverse events (AEs) in human. This could be because off-target activities do not have functional consequences, are not observed at exposures achieved during clinical testing, or may not translate into clinical outcomes. We report clinical consequences of an off-target activity observed during profiling of AMG 337, a selective inhibitor of the mesenchymal-epithelial transition factor being evaluated for treatment of solid tumors. In our screen of 151 potential off-targets, AMG 337 inhibited only adenosine transporter (AT). During clinical trials, headache emerged as the dose-limiting AE in the first-in-human trial. It was thought that headache was caused by extracellular accumulation of adenosine from inhibition of AT by AMG 337 and subsequent adenosine-mediated vasodilation through adenosine receptors (ARs). Further nonclinical studies were performed to evaluate this hypothesis. AMG 337 inhibited AT function in dog and human cells in vitro and dog and human arteries ex vivo. In a dog telemetry study, AMG 337 caused hypotension, which was reduced by pretreatment with theophylline, an AR antagonist. Overall, nonclinical and clinical data suggested that headache was due to cerebral vasorelaxation caused by AMG 337-mediated inhibition of AT. When subjects were advised to drink coffee, an AR antagonist, prior to AMG 337, the severity of headaches was reduced, allowing them to continue treatment. These findings demonstrate the importance of carefully evaluating clinical observations during early drug development and the value of translational nonclinical studies to investigate the mechanism of action driving clinical observations.

12.
Article in English | MEDLINE | ID: mdl-29505899

ABSTRACT

INTRODUCTION: The sensitivity of a given test to detect a treatment-induced effect in a variable of interest is intrinsically related to the variability of that variable observed without treatment and the number of observations made in the study (i.e. number of animals). To evaluate test sensitivity to detect drug-induced changes in myocardial contractility using the variable LVdP/dtmax, a HESI-supported consortium designed and conducted studies in chronically instrumented, conscious dogs using telemetry. This paper evaluated the inherent variability of the primary endpoint, LVdP/dtmax, over time in individual animals as well as the variability between animals for a given laboratory. An approach is described to evaluate test system variability and thereby test sensitivity which may be used to support the selection of the number of animals for a given study, based on the desired test sensitivity. METHODS: A double 4 × 4 Latin square study design where eight animals each received a vehicle control and three dose levels of a test compound was conducted at six independent laboratories. LVdP/dtmax was assessed via implanted telemetry systems in Beagle dogs (N = 8) using the same protocol and each of the six laboratories conducted between two and four studies. Vehicle data from each study was used to evaluate the between-animal and within-animal variability in different time averaging windows. Simulations were conducted to evaluate statistical power and type I error for LVdP/dtmax based on the estimated variability and assumed treatment effects in hourly-interval, bi-hourly interval, or drug-specific super interval. RESULTS: We observe that the within-animal variability can be reduced by as much as 30% through the use of a larger time averaging window. Laboratory is a significant source of animal-to-animal variability as between-animal variability is laboratory-dependent and is less impacted by the use of different time averaging windows. The statistical power analysis shows that with N = 8, the double Latin square design has over 90% power to detect a minimal time profile with a maximum change of up to 15% or approximately 450 mm Hg/s in LVdP/dtmax. With N = 4, the single Latin square design has over 80% power to detect a minimal time profile with a maximum change of up to 20% or approximately 600 mm Hg/s in LVdP/dtmax. DISCUSSION: We describe a statistical procedure to quantitatively evaluate the acute cardiac effects from studies conducted across six sites and objectively examine the variability and sensitivity that were difficult or impossible to calculate consistently based on previous works. Although this report focuses on the evaluation on LVdP/dtmax, this approach is appropriate for other variables such as heart rate, arterial blood pressure, or variables derived from the ECG.


Subject(s)
Data Interpretation, Statistical , Myocardial Contraction/drug effects , Telemetry/methods , Ventricular Function, Left/drug effects , Animals , Dogs , Endpoint Determination , Female , Male , Models, Animal , Research Design , Sample Size , Sensitivity and Specificity , Time Factors
13.
Article in English | MEDLINE | ID: mdl-28065821

ABSTRACT

INTRODUCTION: The importance of drug-induced effects on the inotropic state of the heart is well known. Unlike hemodynamic and cardiac electrophysiological methods, which have been routinely used in drug safety testing for years, the non-clinical assessment of drug effects on myocardial contractility is used less frequently with no established translation to humans. The goal of these studies was to determine whether assessment of alternate measures of cardiac inotropy could detect drug-induced changes in the contractile state of the heart using drugs known to have clinically relevant positive and negative effects on myocardial contractility. This study also evaluated drug-induced effects on lusitropy (relaxation) parameters of the heart. METHODS: A double 4×4 Latin square study design using Beagle dogs (n=8) was conducted. Drugs were administrated orally. Arterial blood pressure (BP), left ventricular pressure (LVP) and the electrocardiogram (ECG) were assessed across different laboratories using the same protocol. Each of the six laboratories studied at least 2 drugs (one positive inotrope (pimobendan or amrinone) and one negative inotrope (itraconazole or atenolol) at 3 doses selected to match clinical exposure data and a vehicle control). Animals were instrumented with an ITS telemetry system or DSI's D70-PCTP or PhysioTel™ Digital system. The data acquisition and analysis systems used were Ponemah, Notocord or EMKA. RESULTS: The derived inotropic and lusitropic parameters evaluated included peak systolic and end diastolic LVP, LVdP/dtmax, LVdP/dt40, QA interval, LVdP/dtmin and Tau. This study showed that LVdP/dt40 provided essentially identical results to LVdP/dtmax qualifying it as an index to assess drug effects on cardiac contractility. LVdP/dt40 provided an essentially identical assessment to that of LVdP/dtmax. The QA interval did not react sensitively to the drugs tested in this study; however, it did detect large effects and could be useful in early cardiovascular safety studies. The lusitropic parameter, LVdP/dtmin, was modestly decreased, and Tau was increased, by atenolol and itraconazole. At the doses tested, amrinone and pimobendan produced no changes in LVdP/dtmin while Tau was modestly increased. The drugs did not produce effects on BP, HR or the ECG at the doses tested. Blood samples were drawn to confirm drug exposures predicted from independent pharmacokinetic studies. DISCUSSION: These findings indicate that this experimental model can accurately and consistently detect changes in cardiac contractility, across multiple sites and instrumentation systems. While LVdP/dt40 produced responses similar to LVdP/dtmax, the QA interval and lusitropic parameters LVdP/dtmin and Tau were not markedly changed at the dose of drugs tested. Further studies with drugs that affect early diastolic relaxation through calcium handling are needed to better evaluate drug-induced changes on lusitropic properties of the heart.


Subject(s)
Cardiotonic Agents/pharmacology , Heart Rate/physiology , Myocardial Contraction/physiology , Ventricular Function, Left/physiology , tau Proteins/blood , Animals , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Female , Heart Rate/drug effects , Hemodynamics/physiology , Itraconazole/pharmacology , Male , Myocardial Contraction/drug effects , Ventricular Function, Left/drug effects
14.
Handb Exp Pharmacol ; 229: 385-404, 2015.
Article in English | MEDLINE | ID: mdl-26091648

ABSTRACT

Biotechnology-derived pharmaceuticals or biopharmaceuticals (BPs) are molecules such as monoclonal antibodies, soluble/decoy receptors, hormones, enzymes, cytokines, and growth factors that are produced in various biological expression systems and are used to diagnose, treat, or prevent various diseases. Safety pharmacology (SP) assessment of BPs has evolved since the approval of the first BP (recombinant human insulin) in 1982. This evolution is ongoing and is informed by various international harmonization guidelines. Based on these guidelines, the potential undesirable effect of every drug candidate (small molecule or BP) on the cardiovascular, central nervous, and respiratory systems, referred to as the "core battery," should be assessed prior to first-in-human administration. However, SP assessment of BPs poses unique challenges such as choice of test species and integration of SP parameters into repeat-dose toxicity studies. This chapter reviews the evolution of SP assessment of BPs using the approval packages of marketed BPs and discusses the past, current, and new and upcoming approach and methods that can be used to generate high-quality data for the assessment of SP of BPs.


Subject(s)
Biological Products/toxicity , Biotechnology , Drug Evaluation, Preclinical/methods , Animals , Biological Products/adverse effects , Central Nervous System/drug effects , Drug and Narcotic Control , Humans , Respiratory System/drug effects
15.
Article in English | MEDLINE | ID: mdl-25843226

ABSTRACT

INTRODUCTION: Drug-induced effects on the cardiovascular system remain a major cause of drug attrition. While hemodynamic (blood pressure (BP) and heart rate (HR)) and electrophysiological methods have been used in testing drug safety for years, animal models for assessing myocardial contractility are used less frequently and their translation to humans has not been established. The goal of these studies was to determine whether assessment of contractility and hemodynamics, when measured across different laboratories using the same protocol, could consistently detect drug-induced changes in the inotropic state of the heart using drugs known to have clinically relevant positive and negative effects on myocardial contractility. METHODS: A 4×4 double Latin square design (n=8) design using Beagle dogs was developed. Drugs were administrated orally. Arterial blood pressure, left ventricular pressure (LVP) and the electrocardiogram were assessed. Each of the six laboratories studied at least 2 drugs (one positive inotrope (pimobendan or amrinone) and one negative inotrope) (itraconazole or atenolol) at 3 doses selected to match clinical exposure data and a vehicle control. Animals were instrumented with an ITS telemetry system, DSI's D70-PCTP system or DSI's Physiotel Digital system. Data acquisition and analysis systems were Ponemah, Notocord or EMKA. RESULTS: Derived parameters included: diastolic, systolic and mean arterial BP, peak systolic LVP, HR, end-diastolic LVP, and LVdP/dtmax as the primary contractility index. Blood samples were drawn to confirm drug exposures predicted from independent pharmacokinetic studies. Across the laboratories, a consistent change in LVdP/dtmax was captured despite some differences in the absolute values of some of the hemodynamic parameters prior to treatment. DISCUSSION: These findings indicate that this experimental model, using the chronically instrumented conscious dog, can accurately and consistently detect changes in cardiac contractility, across multiple sites and instrumentation systems, and that data obtained in this model may also translate to clinical outcomes.


Subject(s)
Blood Pressure/drug effects , Electrocardiography/methods , Heart Rate/drug effects , Myocardial Contraction/drug effects , Amrinone/administration & dosage , Amrinone/pharmacology , Animals , Atenolol/administration & dosage , Atenolol/pharmacology , Dogs , Female , Itraconazole/administration & dosage , Itraconazole/pharmacology , Male , Pyridazines/administration & dosage , Pyridazines/pharmacology , Telemetry/methods
16.
Expert Opin Drug Saf ; 12(1): 91-102, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23170873

ABSTRACT

INTRODUCTION: Biopharmaceuticals, such as monoclonal antibodies and recombinant peptides, are important therapeutics to treat human disease. Key features of biopharmaceuticals that make them innovative medicines are their clinical effectiveness, high specificity for their human target, long half-life and target coverage, and low risk for "off-target" pharmacology. AREAS COVERED: This paper describes nonclinical safety pharmacology assessment of biopharmaceuticals with an emphasis on special considerations needed for these agents. Insight is provided on various approaches to conduct safety pharmacology studies for such therapeutics, including appropriate integration into non-rodent toxicity studies. EXPERT OPINION: The safety pharmacology evaluation of biopharmaceuticals requires a science-based, case-by-case approach, as each biological modality will have unique pharmacological characteristics that influence the overall nonclinical safety assessment strategy. The integration of safety pharmacology endpoints into general (repeat-dose) toxicity studies is a rational paradigm for assessing potential changes in the cardiovascular, central nervous, and respiratory systems, but requires thoughtful and practical planning. In some cases, especially based on target-pharmacology concerns, dedicated and optimally designed safety pharmacology studies may be needed to assess the functional risk of a new biopharmaceutical. For example, cardiovascular telemetry studies may be needed to detect small changes in arterial blood pressure after acute and chronic exposure.


Subject(s)
Biological Products/toxicity , Cardiovascular Diseases/chemically induced , Lung Diseases/chemically induced , Neurotoxicity Syndromes/etiology , Toxicity Tests , Animals , Behavior, Animal/drug effects , Cardiovascular Diseases/physiopathology , Cardiovascular System/drug effects , Cardiovascular System/physiopathology , Drug Design , Humans , Lung/drug effects , Lung/physiopathology , Lung Diseases/physiopathology , Nervous System/drug effects , Nervous System/physiopathology , Neurotoxicity Syndromes/physiopathology , Neurotoxicity Syndromes/psychology , Respiration/drug effects , Risk Assessment , Signal Transduction/drug effects , Toxicity Tests/methods
17.
Psychopharmacology (Berl) ; 204(4): 735-42, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19277609

ABSTRACT

INTRODUCTION: Circadian rhythms in mammals depend upon the cyclic oscillations of transcriptional/translational feedback loops in pacemaker cells of the suprachiasmatic nucleus. The rise and fall of clock-related proteins is a function of synthesis and degradation, the latter involving phosphorylation by casein kinase Iepsilon and delta. OBJECTIVE: Earlier studies by our lab described the actions of a selective CKIepsilon/delta inhibitor, PF-670462, on circadian behavior in rats; the present work extended these studies to a diurnal species, Cynomolgus monkeys. MATERIALS AND METHODS: General cage activity was used to estimate the circadian rhythms of eight telemeterized monkeys under baseline conditions and following s.c. doses of PF-670462. RESULTS AND DISCUSSION: Consolidated bouts of activity were noted during periods of light with a repeating period length of roughly 24 h based on their onset. Reassessment in constant dim light (42 vs. 450 lx) again yielded period lengths of 24 h, in this instance revealing the animals' endogenous rhythm. PF-670462 (10-100 mg/kg s.c.) produced a dose-dependent phase delay in much the same manner as that observed previously in rats. Dosing occurred 1.5 h prior to lights-off, roughly coincident with peaking levels of PER protein, a primary substrate of CKIepsilon/delta. CONCLUSIONS: These findings suggest that the time of dosing, when held constant in both the monkey and rat studies, produced nearly identical effects despite the subjects' diurnal or nocturnal preference. Importantly, these changes in rhythm occurred in the presence of light, revealing the drug as a powerful zeitgeber in a non-human primate and, by extension, in man.


Subject(s)
Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase Idelta/antagonists & inhibitors , Circadian Rhythm , Pyrimidines/pharmacology , Animals , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Injections, Subcutaneous , Light , Macaca fascicularis , Male , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/administration & dosage , Species Specificity , Telemetry
18.
J Pharmacol Toxicol Methods ; 56(2): 95-102, 2007.
Article in English | MEDLINE | ID: mdl-17588780

ABSTRACT

INTRODUCTION: The Health and Environmental Sciences Institute of the International Life Sciences Institute (ILSI/HESI) Cardiovascular Safety Subcommittee outlined a set of in vivo telemetry studies to determine how well this preclinical model identified compounds known to cause torsades de pointes (TdP) and prolong QT interval in humans. In the original analysis of these data, QT, QTcB (Bazett model), QTcF (Fridericia model), and QTcQ (animal-specific model) were evaluated. We further evaluate the statistical properties of these measurements, using a method that can properly account for the sources of variability in the dataset. METHODS: The ILSI/HESI telemetry studies were conducted as a double Latin square design where eight dogs each received a vehicle control and three dose levels of a compound on four separate dosing days. We statistically analyzed the QT/QTc intervals using a repeated measures analysis of covariance and evaluate the powers for QT, QTcF and QTcQ based on simulations. RESULTS: The analyses for QTcF and QTcB intervals show that all six compounds which were known to cause TdP in humans were identified as positive and all six compounds known to be free of TdP events in their clinical use had no statistically significant treatment-related effects, while the analyses for QTcQ identified all positive compounds except pimozide. The power analysis shows that the method can detect a 7% increment of QT, a 5% increment of QTcF, and a 4% increment of QTcQ, with greater than 80% of power when n=8. DISCUSSION: We describe a repeated measures procedure to perform statistical analysis of covariance on Latin square designs and show that it can be used to detect meaningful changes in the analysis of QT/QTc intervals.


Subject(s)
Cardiovascular Physiological Phenomena/drug effects , Electrocardiography/statistics & numerical data , Long QT Syndrome/physiopathology , Pharmaceutical Preparations/administration & dosage , Research Design/standards , Algorithms , Animals , Cardiology/methods , Cardiology/organization & administration , Cardiology/statistics & numerical data , Databases, Factual/statistics & numerical data , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions , Electrocardiography/drug effects , Electrocardiography/methods , Heart Rate/drug effects , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Pimozide/pharmacology , Propranolol/pharmacology , Research Design/statistics & numerical data , Telemetry/methods , Time Factors
19.
Br J Pharmacol ; 146(6): 792-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16158069

ABSTRACT

Moxifloxacin, a fluoroquinolone antibiotic associated with QT prolongation, has been recommended as a positive control by regulatory authorities to evaluate the sensitivity of both clinical and preclinical studies to detect small but significant increases in QT interval measurements. In this study, we investigated effects of moxifloxacin on the hERG current in HEK-293 cells, electrocardiograms in conscious telemetered dogs, and repolarization parameters and arrhythmogenic potentials in the arterially perfused rabbit ventricular wedge model. Moxifloxacin inhibited the hERG current with an IC50 of 35.7 microM. In conscious telemetered dogs, moxifloxacin significantly prolonged QTc at 30 and 90 mg kg(-1), with mean serum Cmax of 8.52 and 22.3 microg ml(-1), respectively. In the wedge preparation, moxifloxacin produced a concentration-dependent prolongation of the action potential duration, QT interval, and the time between peak and end of the T wave, an indicator for transmural dispersion of repolarization. Phase 2 early after-depolarizations were observed in one of five experiments at 30 microM and five of five experiments at 100 microM. The arrhythmogenic potential was also concentration-dependent, and 100 microM ( approximately 18-fold above the typical unbound Cmax exposure in clinical usage) appeared to have a high risk of inducing torsade de pointes (TdP). Our data indicated a good correlation among the concentration-response relationships in the three preclinical models and with the available clinical data. The lack of TdP report by moxifloxacin in patients without other risk factors might be attributable to its well-behaved pharmacokinetic profile and other dose-limiting effects.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Aza Compounds/adverse effects , Long QT Syndrome/chemically induced , Quinolines/adverse effects , Action Potentials/drug effects , Animals , Anti-Infective Agents/adverse effects , Anti-Infective Agents/blood , Anti-Infective Agents/pharmacokinetics , Area Under Curve , Arrhythmias, Cardiac/physiopathology , Aza Compounds/blood , Aza Compounds/pharmacokinetics , Cell Line , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Electrocardiography/drug effects , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/physiology , Female , Fluoroquinolones , Humans , Long QT Syndrome/physiopathology , Male , Moxifloxacin , Phenethylamines/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/physiology , Quinolines/blood , Quinolines/pharmacokinetics , Rabbits , Sulfonamides/pharmacology , Telemetry/methods , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...