Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(24): 245043, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33113524

ABSTRACT

The accuracy in electroencephalography (EEG) and combined EEG and magnetoencephalography (MEG) source reconstructions as well as in optimized transcranial electric stimulation (TES) depends on the conductive properties assigned to the head model, and most importantly on individual skull conductivity. In this study, we present an automatic pipeline to calibrate head models with respect to skull conductivity based on the reconstruction of the P20/N20 response using somatosensory evoked potentials and fields. In order to validate in a well-controlled setup without interplay with numerical errors, we evaluate the accuracy of this algorithm in a 4-layer spherical head model using realistic noise levels as well as dipole sources at different eccentricities with strengths and orientations related to somatosensory experiments. Our results show that the reference skull conductivity can be reliably reconstructed for sources resembling the generator of the P20/N20 response. In case of erroneous assumptions on scalp conductivity, the resulting skull conductivity parameter counterbalances this effect, so that EEG source reconstructions using the fitted skull conductivity parameter result in lower errors than when using the standard value. We propose an automatized procedure to calibrate head models which only relies on non-invasive modalities that are available in a standard MEG laboratory, measures under in vivo conditions and in the low frequency range of interest. Calibrated head modeling can improve EEG and combined EEG/MEG source analysis as well as optimized TES.


Subject(s)
Electric Conductivity , Electroencephalography/methods , Head , Models, Theoretical , Algorithms , Brain/physiology , Calibration , Evoked Potentials, Somatosensory/physiology , Humans , Scalp/physiology , Skull/physiology
2.
IEEE Trans Med Imaging ; 36(4): 930-941, 2017 04.
Article in English | MEDLINE | ID: mdl-27831869

ABSTRACT

Finite element methods have been shown to achieve high accuracies in numerically solving the EEG forward problem and they enable the realistic modeling of complex geometries and important conductive features such as anisotropic conductivities. To date, most of the presented approaches rely on the same underlying formulation, the continuous Galerkin (CG)-FEM. In this article, a novel approach to solve the EEG forward problem based on a mixed finite element method (Mixed-FEM) is introduced. To obtain the Mixed-FEM formulation, the electric current is introduced as an additional unknown besides the electric potential. As a consequence of this derivation, the Mixed-FEM is, by construction, current preserving, in contrast to the CG-FEM. Consequently, a higher simulation accuracy can be achieved in certain scenarios, e.g., when the diameter of thin insulating structures, such as the skull, is in the range of the mesh resolution. A theoretical derivation of the Mixed-FEM approach for EEG forward simulations is presented, and the algorithms implemented for solving the resulting equation systems are described. Subsequently, first evaluations in both sphere and realistic head models are presented, and the results are compared to previously introduced CG-FEM approaches. Additional visualizations are shown to illustrate the current preserving property of the Mixed-FEM. Based on these results, it is concluded that the newly presented Mixed-FEM can at least complement and in some scenarios even outperform the established CG-FEM approaches, which motivates a further evaluation of the Mixed-FEM for applications in bioelectromagnetism.


Subject(s)
Finite Element Analysis , Algorithms , Anisotropy , Computer Simulation , Electroencephalography , Head , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...