Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 39(16): 6195-6217, 2021 Oct.
Article in English | MEDLINE | ID: mdl-32686993

ABSTRACT

The novel coronavirus of 2019 (nCoV-19) has become a pandemic, affecting over 205 nations with over 7,410,000 confirmed cases which has resulted to over 418,000 deaths worldwide. This study aimed to identify potential therapeutic compounds and phytochemicals of medicinal plants that have potential to modulate the expression network of genes that are involve in SARS-CoV-2 pathology in human host and to understand the dynamics key proteins involved in the virus-host interactions. The method used include gene network analysis, molecular docking, and sequence and structure dynamics simulations. The results identified DNA-dependent protein kinase (DNA-PK) and Protein kinase CK2 as key players in SARS-CoV-2 lifecycle. Among the predicted drugs compounds, clemizole, monorden, spironolactone and tanespimycin showed high binding energies; among the studied repurposing compounds, remdesivir, simeprevir and valinomycin showed high binding energies; among the predicted acidic compounds, acetylursolic acid and hardwickiic acid gave high binding energies; while among the studied anthraquinones and glycosides compounds, ellagitannin and friedelanone showed high binding energies against 3-Chymotrypsin-like protease (3CLpro), Papain-like protease (PLpro), helicase (nsp13), RNA-dependent RNA polymerase (nsp12), 2'-O-ribose methyltransferase (nsp16) of SARS-CoV-2 and DNA-PK and CK2alpha in human. The order of affinity for CoV proteins is 5Y3E > 6NUS > 6JYT > 2XYR > 3VB6. Finally, medicinal plants with phytochemicals such as caffeine, ellagic acid, quercetin and their derivatives could possibly remediate COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals , SARS-CoV-2 , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...