Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(37): 14980-14990, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37651565

ABSTRACT

Methylmercury, mercury (II), and mercury (I) chlorides were found to react with vasopressin, a nonapeptide hormone cyclized by two cysteine residues, and its mono- and diselenium analogues to form several mercury-peptide adducts. The replacement of Cys by SeCys in vasopressin increased the reactivity toward methylmercury, with the predominant formation of -Se/S-Hg-Se-bridged structures and the consequent demethylation of methylmercury. In competitive experiments, CH3HgCl reacted preferentially with the diselenium analogue rather than with vasopressin. The diselenium peptide also showed the capability to displace the CH3Hg moiety bound to S in vasopressin. These results open a promising perspective for the use of selenopeptides for methylmercury chelation and detoxification strategies.


Subject(s)
Mercury , Methylmercury Compounds , Cysteine , Chlorides , Peptides
2.
STAR Protoc ; 4(3): 102400, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37590149

ABSTRACT

Primary metabolites are molecules of essential biochemical reactions that define the biological phenotype. All primary metabolites cannot be measured in a single analysis. In this protocol, we outline the multiplexed and quantitative measurement of 106 metabolites that cover the central part of primary metabolism. The protocol includes several sample preparation techniques and one liquid chromatography-mass spectrometry method. Then, we describe the steps of the bioinformatic data analysis to better understand the metabolic perturbations that may occur in a biological system. For complete details on the use and execution of this protocol, please refer to: Costanza et al.,1 Blomme et al.,2 Blomme et al.,3 Guillon et al.,4 Stuani et al.5.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods
3.
STAR Protoc ; 4(3): 102226, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37597187

ABSTRACT

Polyunsaturated fatty acids (PUFAs) and their oxidized products (oxylipins) are important mediators in intra- and extra-cellular signaling. We describe here the simultaneous quantification of 163 PUFAs and oxylipins using liquid chromatography-mass spectrometry (LC-MS). The protocol details steps for PUFA purification from various biological materials, the conditions for LC-MS analysis, as well as quantitative approaches for data evaluation. We provide an example of PUFA quantification in animal tissue along with the bioinformatic protocol, enabling efficient inter-sample comparison and statistical analysis. For complete details on the use and execution of this protocol, please refer to Vila et al.,1 Costanza et al.,2 Blomme et al.,3 and Blomme et al.4.


Subject(s)
Oxylipins , Tandem Mass Spectrometry , Animals , Oxylipins/analysis , Tandem Mass Spectrometry/methods , Fatty Acids, Unsaturated/chemistry , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
4.
Inorg Chem ; 62(26): 10389-10396, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37342994

ABSTRACT

Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.


Subject(s)
Antineoplastic Agents , Auranofin , Auranofin/pharmacology , Auranofin/chemistry , Ligands , Gold/chemistry , Antineoplastic Agents/pharmacology , Magnetic Resonance Spectroscopy
5.
Rapid Commun Mass Spectrom ; 37(8): e9476, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36656736

ABSTRACT

RATIONALE: Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an approach derived from matrix-assisted laser desorption/ionization (MALDI)-MS which overcomes the drawbacks associated with the use of organic matrices required to co-crystallize with the analytes. Indeed, nanomaterials commonly used in SALDI-MS as inert surfaces to promote desorption/ionization (D/I) ensure straightforward direct deposition of samples while providing mass spectra with ions only related to the compound of interest. The objective of this study was to develop a novel SALDI-MS approach based on steel plates that are surfaces very rapidly and easily tuned to perform the most efficient peptide detection as possible. To compare the SALDI efficacy of such metal substrates, D/I efficiency and deposit homogeneity were evaluated according to steel plate fabrication processes. METHODS: The studied surfaces were nanostructured steel plates that were chemically modified by perfluorosilane and textured according to different frequencies and laser writing powers. The capacity of each tested 100 surfaces was demonstrated by comparative analyses of a mixture of standard peptides (m/z 600-3000) performed with a MALDI-TOF instrument enabling MALDI, SALDI and imaging experiments. RESULTS: A peptide mix was used to screen the different surfaces depending on their D/I efficiency and their ability to ensure homogeneous deposit of the samples. For that purpose, deposition homogeneity was visualized owing to reconstructed ionic images from all protonated or sodiated ions of the 10 peptides constituting the standard mix. CONCLUSIONS: Seven surfaces were then selected satisfying the required D/I efficiency and deposit homogeneity criteria. Results obtained with these optimal surfaces were then compared with those recorded by MALDI-MS analyses used as references.


Subject(s)
Nanostructures , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Nanostructures/chemistry , Peptides , Lasers , Ions
6.
Anal Biochem ; 655: 114823, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35921876

ABSTRACT

α-amidation of peptide sequences is a common post-translational modification in the living world. Since the majority of these C-terminal amidated peptides are bioactive, there is hence a great interest to identify and characterize them from biological matrices and natural extracts. Regarding conventional separative methods dedicated to peptides (such as HPLC or CE), elution protocols must be carefully optimized hampering straightforward LC-MS analysis of complex samples. From a mass spectrometry point of view, they are difficult to pinpoint owing to the only 1 Da mass difference between the post-translational amidated and the corresponding native carboxylated forms producing overlapping isotopic contributions of both molecular ions. To circumvent this analytical difficulty, usage of energy-resolved tandem mass spectrometry experiments and of the survival yield technique was investigated. Pair of peptides were thus dissociated in positive and negative mode according to the survival yield technique, in MS2 and MS3 experiments, in order to separate them giving a reliable MS/MS methodology to detect such post-translationally modified sequence.


Subject(s)
Peptides , Tandem Mass Spectrometry , Amino Acid Sequence , Chromatography, High Pressure Liquid , Chromatography, Liquid , Peptides/chemistry
7.
Talanta ; 237: 122915, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34736651

ABSTRACT

Mass Spectrometry Imaging is an effective technology that allows to determine the in-situ distribution of endogen and/or exogen small molecules. It is a rapidly emerging approach for visualizing drugs and their metabolites within biological tissues. Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI) coupled to high resolving power analyzer (e.g. TOF) was already investigated for metallodrug localization and metabolization studies, but was proved to suffer from a lack of sensitivity and resolution, leading to poor coverage and assignment. To counter these technological limitations, the use of ultra-high resolving power analyzer such as Fourier Transform Ion Cyclotron Resonance (FTICR) could be revealed as a technique of choice. The high field FTICR MS provides ultra-high resolving power and mass accuracy that allows exhaustive molecule coverage and non-ambiguous molecular formula assignments. Platinum derivatives, such as oxaliplatin, are widely used as therapeutic agents for cancer treatment. The assessment of their intake, distribution and metabolism within the organs is important to know the risks associated with their use. In this study, MALDI FTICR MSI analyses were performed to better understand the penetration and metabolization of platinum derivatives in ovaries of women treated by Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for peritoneal metastasis of colorectal or appendicular origin. Twelve ovary sections, from six ovary samples in six women donors, before and after treatment, were analyzed with 120 µm spatial resolution. For the first time, the high resolving power (220,000 at m/z 457) and sub-ppm accuracy (<1 ppm) of the FTICR combined with an Isotopic Fine Structure study enabled to distinguish two Pt-isobaric species derived from oxaliplatin in biological tissues. One of these, which is unknown, was specifically localized at the contour of the ovary.


Subject(s)
Cyclotrons , Lasers , Fourier Analysis , Humans , Oxaliplatin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
Dalton Trans ; 50(47): 17487-17490, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34796892

ABSTRACT

The reactions of the medicinal gold(I) compound auranofin and its close analogues with vasopressin and the diselenide analogue were comparatively investigated by LC-electrospray MS/MS. Evidence is gained of the possible cleavage of the S-S and Se-Se bridges induced by Au(I). Notably, we found that, in the absence of reducing agents, the sulfur and selenium atoms are metallated only at high temperature (70 °C) with the preferential binding of gold to selenium. The reaction with the S-S bridge can take place at physiological temperature (37 °C) under reducing conditions. The implications of these results are discussed in the general frame of the reactivity of biologically relevant soft Lewis acids with peptides and proteins.


Subject(s)
Neurophysins/antagonists & inhibitors , Organogold Compounds/pharmacology , Organoselenium Compounds/pharmacology , Protein Precursors/antagonists & inhibitors , Vasopressins/antagonists & inhibitors , Humans , Neurophysins/metabolism , Organogold Compounds/chemistry , Organoselenium Compounds/chemistry , Protein Precursors/metabolism , Vasopressins/metabolism
9.
Pleura Peritoneum ; 6(2): 67-74, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34179340

ABSTRACT

OBJECTIVES: Platinum salts are commonly used in hyperthermic intraperitoneal chemotherapy (HIPEC) for digestive tract cancer treatment. During HIPEC with oxaliplatin for peritoneal metastases (PMs) treatment, the ovaries are directly exposed to the drug, questioning about ovarian resection and the potential impact of the drug on ovarian functionality, especially in young women of childbearing age. The goal of this work is to understand unwanted damages to the ovaries during HIPEC therapy by the determination of the concentration and distribution of platinum in ovaries in order to address its potential toxicity. METHODS: Mass spectrometry imaging techniques, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS), were used to study the penetration of oxaliplatin in ovaries after HIPEC treatment. RESULTS: MALDI-MS allowed the localization of an oxaliplatin-derivative (m/z 456.2) at the periphery of the ovaries. The quantitative LA-ICP MS maps confirmed the localization of elemental platinum as well as in the central part of ovaries from patients who received a previous platinum salt-based chemotherapy. CONCLUSIONS: LA-ICP MS images showed that platinum diffusion was extended in cases of previous systemic treatment, questioning about platinum derivatives gonado-toxicity when combining the two treatments.

10.
Mar Drugs ; 19(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801301

ABSTRACT

Cone snails are venomous marine predators that rely on fast-acting venom to subdue their prey and defend against aggressors. The conotoxins produced in the venom gland are small disulfide-rich peptides with high affinity and selectivity for their pharmacological targets. A dominant group comprises α-conotoxins, targeting nicotinic acetylcholine receptors. Here, we report on the synthesis, structure determination and biological activity of a novel α-conotoxin, CIC, found in the predatory venom of the piscivorous species Conus catus and its truncated mutant Δ-CIC. CIC is a 4/7 α-conotoxin with an unusual extended N-terminal tail. High-resolution NMR spectroscopy shows a major influence of the N-terminal tail on the apparent rigidity of the three-dimensional structure of CIC compared to the more flexible Δ-CIC. Surprisingly, this effect on the structure does not alter the biological activity, since both peptides selectively inhibit α3ß2 and α6/α3ß2ß3 nAChRs with almost identical sub- to low micromolar inhibition constants. Our results suggest that the N-terminal part of α-conotoxins can accommodate chemical modifications without affecting their pharmacology.


Subject(s)
Conotoxins/isolation & purification , Conus Snail/metabolism , Mollusk Venoms/chemistry , Nicotinic Antagonists/isolation & purification , Animals , Conotoxins/chemistry , Conotoxins/pharmacology , Magnetic Resonance Spectroscopy , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
11.
J Am Soc Mass Spectrom ; 31(11): 2328-2337, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33064467

ABSTRACT

As part of the de novo sequencing issue, new approaches have to be found to sequence small natural peptides (<15-20 residues), which often present amino acid compositions, inducing merely singly charged species, that are quite difficult to thoroughly fragment under low-energy activation conditions in MS/MS experiments. Cationization by alkali metals, like Na+, followed by collision-induced dissociations (CID) or the postsource metastable decay (PSD) of such cationized molecular ions was found to improve the sequence coverage of native peptides through the formation of [bn-1 + Na + OH]+ ions issued from C-terminal residue exclusion. Concerned by the identification of peptides with a C-terminal amide, the fragmentation pattern of their sodiated molecular ions was investigated. In contrast to the peptides featuring unmodified C-termini, the C-terminal loss did not occur, with the amide function triggering different fragmentation pathways. However, several residues, such as aspartic acid (D), glutamic acid (E), and arginine (R), influenced the dissociation of fixed-charge sodiated ions similarly to protonated peptides; more surprisingly, serine (S), threonine (T), and tyrosine (Y), which exhibit a hydroxyl function on their side chains, showed a very peculiar behavior that could help de novo peptide sequencing.


Subject(s)
Peptides/chemistry , Amides/chemistry , Amino Acid Sequence , Cations/chemistry , Sequence Analysis, Protein , Tandem Mass Spectrometry
12.
J Med Chem ; 63(21): 12682-12692, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33063995

ABSTRACT

Venom peptides are promising drug leads, but their therapeutic use is often limited by stability and bioavailability issues. In this study, we designed cyclic analogues of α-conotoxin CIA, a potent muscle nicotinic acetylcholine receptor (nAChR) blocker with a significantly lower affinity at the neuronal α3ß2 subtype. Remarkably, all analogues retained the low nanomolar activity of native CIA toward muscle-type nAChRs but showed greatly improved resistance to degradation in human serum and, surprisingly, displayed up to 52-fold higher potency for the α3ß2 neuronal nAChR subtype (IC50 1.3 nM). Comparison of nuclear magnetic resonance-derived structures revealed some differences that might explain the gain of potency at α3ß2 nAChRs. All peptides were highly paralytic when injected into adult zebrafish and bath-applied to zebrafish larvae, suggesting barrier-crossing capabilities and efficient uptake. Finally, these cyclic CIA analogues were shown to be unique pharmacological tools to investigate the contribution of the presynaptic α3ß2 nAChR subtype to the train-of-four fade.


Subject(s)
Ligands , Muscles/metabolism , Neurons/metabolism , Nicotinic Antagonists/chemistry , Peptides/chemistry , Receptors, Nicotinic/metabolism , Venoms/metabolism , Amino Acid Sequence , Animals , Conotoxins/chemistry , Cyclization , Larva/drug effects , Larva/physiology , Locomotion/drug effects , Mice , Muscle Contraction/drug effects , Nicotinic Antagonists/metabolism , Nicotinic Antagonists/pharmacology , Peptides/metabolism , Peptides/pharmacology , Protein Binding , Protein Structure, Tertiary , Receptors, Nicotinic/chemistry , Zebrafish/growth & development , Zebrafish/physiology
13.
Antioxidants (Basel) ; 9(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722307

ABSTRACT

Wine oxidation and ageing involve many complex chemical pathways and reaction mechanisms. The purpose of this study is to set up new and reproducible accelerated red wine ageing tests and identify chemical oxidation or ageing molecular markers. Three accelerated and reproducible ageing tests were developed: a heat test (60 °C); an enzymatic test (laccase test; a chemical test (hydrogen peroxide test). Depending on the test, oxygen consumption was significantly different. For a young wine (2018), the oxygen consumption rate moved from 2.40 ppm.h-1 for the heat test to 3.33 ppm.h-1 for the enzymatic test and 2.86 ppm.h-1 for the chemical test. Once applied to two other vintages (2010 and 2014) from the same winery, the tests revealed different comportments corresponding to wine natural evolution. High resolution UPLC-MS was performed on forced ageing samples and compared to naturally aged red wines. Specific oxidation or ageing ion markers were found with significant differences between tests, revealing the specificity of each test and different possible molecular pathways involved. The hydrogen peroxide test seems to be closer to natural oxidation with an important decrease in absorbance at 520 nm and similar molecular ion variations for [M+H]+ = 291, 331, 347, 493, 535, 581, 639 Da.

14.
Rapid Commun Mass Spectrom ; 34(12): e8778, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32144813

ABSTRACT

RATIONALE: Both amide bond protonation triggering peptide fragmentations and the controversial b2 -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b2 -ion formation was investigated, focusing on the QHS model tripeptide. METHODS: To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b2 -ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS2 and MS3 tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS2 ) method was used to predict fragmentation patterns. RESULTS: Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b2 -ions using MS2 and MS3 mass spectra, the calculations indicated that the QH b2 -ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation. CONCLUSIONS: In contrast to glycine-histidine-containing b2 -ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.


Subject(s)
Amides/chemistry , Histidine/chemistry , Ions/chemistry , Mass Spectrometry/methods , Oligopeptides/chemistry , Diketopiperazines/chemistry , Glycine/chemistry , Oligopeptides/analysis , Oxazolone/chemistry , Protons , Thermodynamics
15.
Mar Drugs ; 18(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155768

ABSTRACT

Cone snails produce a fast-acting and often paralyzing venom, largely dominated by disulfide-rich conotoxins targeting ion channels. Although disulfide-poor conopeptides are usually minor components of cone snail venoms, their ability to target key membrane receptors such as GPCRs make them highly valuable as drug lead compounds. From the venom gland transcriptome of Conus miliaris, we report here on the discovery and characterization of two conopressins, which are nonapeptide ligands of the vasopressin/oxytocin receptor family. These novel sequence variants show unusual features, including a charge inversion at the critical position 8, with an aspartate instead of a highly conserved lysine or arginine residue. Both the amidated and acid C-terminal analogues were synthesized, followed by pharmacological characterization on human and zebrafish receptors and structural investigation by NMR. Whereas conopressin-M1 showed weak and only partial agonist activity at hV1bR (amidated form only) and ZFV1a1R (both amidated and acid form), both conopressin-M2 analogues acted as full agonists at the ZFV2 receptor with low micromolar affinity. Together with the NMR structures of amidated conopressins-M1, -M2 and -G, this study provides novel structure-activity relationship information that may help in the design of more selective ligands.


Subject(s)
Conotoxins/chemistry , Conotoxins/pharmacology , Conus Snail/chemistry , Amino Acid Sequence , Animals , Conotoxins/chemical synthesis , Disulfides/chemistry , Disulfides/pharmacology , Humans , Molecular Conformation , Mollusk Venoms/chemistry , Neurophysins/antagonists & inhibitors , Protein Precursors/antagonists & inhibitors , Receptors, Oxytocin/drug effects , Receptors, Vasopressin/drug effects , Structure-Activity Relationship , Transcriptome , Vasopressins/antagonists & inhibitors , Zebrafish
16.
J Proteomics ; 218: 103707, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32087377

ABSTRACT

The asp viper Vipera aspis aspis is a venomous snake found in France, and despite its medical importance, the complete toxin repertoire produced is unknown. Here, we used a venomics approach to decipher the composition of its venom. Transcriptomic analysis revealed 80 venom-annotated sequences grouped into 16 gene families. Among the most represented toxins were snake venom metalloproteases (23%), phospholipases A2 (15%), serine proteases (13%), snake venom metalloprotease inhibitors (13%) and C-type lectins (12%). LC-MS of venoms revealed similar profiles regardless of the method of extraction (milking vs defensive bite). Proteomic analysis validated 57 venom-annotated transcriptomic sequences (>70%), including one for each of the 16 families, but also identified 7 sequences not initially annotated as venom proteins, including a serine protease, a disintegrin, a glutaminyl-peptide cyclotransferase, a proactivator polypeptide-like and 3 aminopeptidases. Interestingly, phospholipases A2 were the dominant proteins in the venom, among which included an ammodytoxin B-like sequence, which may explain the reported neurotoxicity following some asp viper envenomations. In total, 87 sequences were retrieved from the Vipera aspis aspis transcriptome and proteome, constituting a valuable resource that will help in understanding the toxinological basis of clinical signs of envenoming and for the mining of useful pharmacological compounds. BIOLOGICAL SIGNIFICANCE: The asp viper (Vipera aspis aspis) causes several hundred envenomations annually in France, including unusual cases with neurological signs, resulting in one death per year on average. Here, we performed a proteotranscriptomic analysis of V. a. aspis venom in order to provide a better understanding of its venom composition. We found that, as in other Vipera species, phospholipase A2 dominates in the venom, and the presence of a sequence related to ammodytoxin B may explain the reported neurotoxicity following some asp viper envenomations. Thus, this study will help in informing the toxinological basis of clinical signs of envenoming.


Subject(s)
Proteomics , Viperidae , Animals , France , Humans , Metalloproteases/genetics , Phospholipases A2 , Viper Venoms
17.
Sci Rep ; 10(1): 1170, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980696

ABSTRACT

A rapid Ultra Performance Liquid Chromatography coupled with Quadrupole/Time Of Flight Mass Spectrometry (UPLC-QTOF-MS) method was designed to quickly acquire high-resolution mass spectra metabolomics fingerprints for rosé wines. An original statistical analysis involving ion ratios, discriminant analysis, and genetic algorithm (GA) was then applied to study the discrimination of rosé wines according to their origins. After noise reduction and ion peak alignments on the mass spectra, about 14 000 different signals were detected. The use of an in-house mass spectrometry database allowed us to assign 72 molecules. Then, a genetic algorithm was applied on two series of samples (learning and validation sets), each composed of 30 commercial wines from three different wine producing regions of France. Excellent results were obtained with only four diagnostic peaks and two ion ratios. This new approach could be applied to other aspects of wine production but also to other metabolomics studies.


Subject(s)
Algorithms , Mass Spectrometry/methods , Metabolomics/methods , Wine/analysis , Chromatography, Liquid/methods , Ions , Polyphenols/analysis
18.
Molecules ; 24(21)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694238

ABSTRACT

Glycosylated flavanols (monoglycosides and diglycosides) in skin and seed extracts of Vitis vinifera grapes grown in Castilla-La Mancha (Spain) were investigated using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-ESI-QQQ-MS/MS). Six grape varieties (Airén, Tempranillo, the recently identified Albillo Dorado, Montonera del Casar, Moribel, and Tinto Fragoso) were studied over two consecutive years (2016 and 2017). A total of twenty monomeric flavanol monoglycosides, four diglycosylated monomers, and three dimeric flavanol monoglycosides were detected in all grape samples. The diversity observed in the composition of glycosylated flavanol in the grape berries suggests a strong influence of variety and grape tissue (skin or seed). Monomeric flavanol glycosides were more abundant in grape seed extracts, in contrast with monoglycosylated dimeric forms. In addition, the glycosylated flavanol content was related to berry color in grape skins, with higher concentrations measured in black grape varieties.


Subject(s)
Flavonoids/chemistry , Glycosides/chemistry , Grape Seed Extract/chemistry , Seeds/chemistry , Vitis/chemistry , Chromatography, High Pressure Liquid/methods , Polyphenols/chemistry , Spain , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Wine
19.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 66-74, 2019 May.
Article in English | MEDLINE | ID: mdl-30048019

ABSTRACT

RATIONALE: Many important biological processes rely on specific biomarkers (such as metabolites, drugs, proteins or peptides, carbohydrates, lipids, ...) that need to be monitored in various fluids (blood, plasma, urine, cell cultures, tissue homogenates, …). Although mass spectrometry (MS) hyphenated to liquid chromatography (LC) is widely accepted as a 'gold-standard' method for identifying such synthetic chemicals or biological products, their robust fast sensitive detection from complex matrices still constitutes a highly challenging matter. METHODS: In order to circumvent the constraints intrinsic to LC/MS technology in terms of prior sample treatment, analysis time and overall method development to optimize ionization efficiency affecting the detection threshold, we investigated laser desorption/ionization mass spectrometry (LDI-MS) by directly depositing the sample under study onto cheap inert nanostructures made of silicon to perform straightforward sensitive and rapid screening of targeted low mass biomarkers on a conventional MALDI platform. RESULTS: The investigated silicon nanostructures were found to act as very efficient ion-promoting surfaces exhibiting high performance for the detection of different classes of organic compounds, including glutathione, glucose, peptides and antibiotics. Achieving such broad detection was compulsory to develop a SALDI-MS-based pre-screening tool. CONCLUSIONS: The key contribution of the described analytical strategy consists of designing inert surfaces that are fast (minute preparation) and cheap to produce, easy to handle and able to detect small organic compounds in matrix-free LDI-MS prerequisite for biomarkers pre-screening from body fluids without the recourse of any separation step.


Subject(s)
Nanostructures/chemistry , Silicon/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Anti-Bacterial Agents/analysis , Biomarkers/analysis , Glutathione/analysis , Models, Biological , Peptides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
20.
Molecules ; 23(12)2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30545151

ABSTRACT

Monomeric and dimeric flavanol glycosides were quantified by UHPLC-MRM in Syrah (SYR) and Grenache (GRE) grapes and in their corresponding wines for the first time. Quantities were extremely variable depending on grape tissue (seeds or skins) and during fermentation. Overall, 22 monomeric and dimeric mono- and diglycosides were determined with concentrations ranging from 0.7 nanograms to 0.700 micrograms per gram of grape tissue, and 0 to 60 micrograms per liter for wines. The evolution of the glycosides' composition during winemaking suggests that almost all these compounds originate in the grapes themselves and display different extraction kinetics during winemaking. One isomer of the monomeric (epi) flavanol monoglycosides seemed to be biosynthesized by yeasts during wine fermentation. The sharp decrease in concentration of some isomers at the late stages of fermentation or after pressing suggests that some grape glycosidase activities convert these compounds into non-glycosylated flavanols.


Subject(s)
Fruit/chemistry , Glycosides , Vitis/chemistry , Wine , Fermentation , Flavonoids/chemistry , Glycosides/chemistry , Glycosides/metabolism , Seeds/chemistry , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...