Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Exp Neurol ; 378: 114843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823675

ABSTRACT

Poststroke neuroinflammation exacerbates disease progression. [11C]PK11195-positron emission tomography (PET) imaging has been used to visualize neuroinflammation; however, its short half-life of 20 min limits its clinical use. [123I]CLINDE has a longer half-life (13h); therefore, [123I]CLINDE-single-photon emission computed tomography (SPECT) imaging is potentially more practical than [11C]PK11195-PET imaging in clinical settings. The objectives of this study were to 1) validate neuroinflammation imaging using [123I]CLINDE and 2) investigate the mechanisms underlying stroke in association with neuroinflammation using multimodal techniques, including magnetic resonance imaging (MRI), gas-PET, and histological analysis, in a rat model of ischemic stroke, that is, permanent middle cerebral artery occlusion (pMCAo). At 6 days post-pMCAo, [123I]CLINDE-SPECT considerably corresponded to the immunohistochemical images stained with the CD68 antibody (a marker for microglia/microphages), comparable to the level observed in [11C]PK11195-PET images. In addition, the [123I]CLINDE-SPECT images corresponded well with autoradiography images. Rats with severe infarcts, as defined by MRI, exhibited marked neuroinflammation in the peri-infarct area and less neuroinflammation in the ischemic core, accompanied by a substantial reduction in the cerebral metabolic rate of oxygen (CMRO2) in 15O-gas-PET. Rats with moderate-to-mild infarcts exhibited neuroinflammation in the ischemic core, where CMRO2 levels were mildly reduced. This study demonstrates that [123I]CLINDE-SPECT imaging is suitable for neuroinflammation imaging and that the distribution of neuroinflammation varies depending on the severity of infarction.


Subject(s)
Disease Models, Animal , Tomography, Emission-Computed, Single-Photon , Animals , Rats , Tomography, Emission-Computed, Single-Photon/methods , Male , Rats, Sprague-Dawley , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Stroke/pathology , Stroke/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology
2.
Article in English | MEDLINE | ID: mdl-38376701

ABSTRACT

Critical limb ischemia (CLI) is a state of severe peripheral artery disease, with no effective treatment. Cell therapy has been investigated as a therapeutic tool for CLI, and pericytes are promising therapeutic candidates based on their angiogenic properties. We firstly generated highly proliferative and immunosuppressive pericyte-like cells from embryonic stem (ES) cells. In order to enhance the angiogenic potential, we transduced the basic fibroblast growth factor (bFGF) gene into the pericyte-like cells and found a significant enhancement of angiogenesis in a Matrigel plug assay. Furthermore, we evaluated the bFGF-expressing pericyte-like cells in the previously established chronic hindlimb ischemia model in which bone marrow-derived MSCs were not effective. As a result, bFGF-expressing pericyte-like cells significantly improved blood flow in both laser Doppler perfusion imaging (LDPI) and dynamic contrast-enhanced MRI (DCE-MRI). These findings suggest that bFGF-expressing pericyte-like cells differentiated from ES cells may be a therapeutic candidate for CLI.

3.
Toxicol Rep ; 12: 1-9, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38173653

ABSTRACT

Drug-induced steatohepatitis is considered more serious than drug-induced hepatic steatosis, so that differentiating between the two is crucial in drug development. In addition, early detection of drug-induced steatohepatitis is considered important since recovery is possible with drug withdrawal. However, no method has been established to differentiate between the two. In the development of drug-induced steatohepatitis, reactive oxygen species (ROS) is excessively generated in the liver. It has been reported that ROS can be monitored with electron spin resonance (ESR) and dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) by using nitroxyl radicals, which are known to participate in various in vivo redox reactions. The decay/reduction rate, which is an index for monitoring nitroxyl radicals, has been reported to be increased in tissues with excessive ROS levels other than liver, but decreased in methionine choline deficient (MCD) diet-induced steatohepatitis with excess ROS. Therefore, looking to differentiate between drug-induced hepatic steatosis and steatohepatitis, we examined whether the reduction rate decreases in steatohepatitis other than the MCD-diet induced disease and whether the decrease could be detected by MRI. We used STAM™ mice in which hepatic steatosis and steatohepatitis developed sequentially under diabetic conditions. 3-carbamoyl-PROXYL (CmP), one of the nitroxyl radicals, was injected intravenously during the MRI procedure and the reduction rate was calculated. The reduction rate was significantly higher in early steatohepatitis than in hepatic steatosis and the control. Excess ROS in early steatohepatitis was detected by an immunohistochemical marker for ROS. Therefore, it was indicated that the increase or decrease in the reduction rate in steatohepatitis differs depending on the model, and early steatohepatitis could be noninvasively differentiated from hepatic steatosis using CmP in MRI. Since the change in direction of the reduction rate in steatohepatitis in clinical studies could be predicted by confirming the reduction rate in preclinical studies, the present method, which can be used consistently in clinical and preclinical studies, warrants consideration as a candidate monitoring method for differentiating between early drug-induced steatohepatitis and hepatic steatosis in drug development.

4.
Toxicol Rep ; 10: 481-486, 2023.
Article in English | MEDLINE | ID: mdl-37179768

ABSTRACT

No method of monitoring drug-induced hepatic steatosis has been established, which is a concern in drug development. Hepatic steatosis is divided into diffuse and non-diffuse forms according to the pattern of fat deposition. Diffuse hepatic steatosis was reported as evaluable by 1H-magnetic resonance spectroscopy (1H-MRS), which is used as an adjunct to the MRI examination. Blood biomarkers for hepatic steatosis have been also actively investigated. However, there are few reports to conduct 1H-MRS or blood test in human or animal non-diffuse hepatic steatosis with reference to histopathology. Therefore, to investigate whether non-diffuse hepatic steatosis can be monitored by 1H-MRS and/or blood samples, we compared histopathology to 1H-MRS and blood biochemistry in a non-diffuse hepatic steatosis rat model. Non-diffuse hepatic steatosis was induced by feeding rats the methionine choline deficient diet (MCDD) for 15 days. The evaluation sites of 1H-MRS and histopathological examination were three hepatic lobes in each animal. The hepatic fat fraction (HFF) and the hepatic fat area ratio (HFAR) were calculated from 1H-MRS spectra and digital histopathological images, respectively. Blood biochemistry analyses included triglycerides, total cholesterol, alanine aminotransferase, and aspartate aminotransferase. A strong correlation was found between HFFs and HFARs in each hepatic lobe (r = 0.78, p < 0.0001) in rats fed the MCDD. On the other hand, no correlation was found between blood biochemistry values and HFARs. This study showed that 1H-MRS parameters correlated with histopathological changes but blood biochemistry parameters didn't, so that it is suggested that 1H-MRS has the potential to be a monitoring method for non-diffuse hepatic steatosis in rats fed the MCDD. Given that 1H-MRS is commonly used in preclinical and clinical studies, 1H-MRS should be considered a candidate method for monitoring drug-induced hepatic steatosis.

5.
Toxicol Rep ; 10: 97-103, 2023.
Article in English | MEDLINE | ID: mdl-36685272

ABSTRACT

There are no specific and sensitive biomarkers for arteritis, and the occurrence of arteritis in nonclinical toxicological studies of a candidate drug makes development of the drug very difficult. However, we showed in a previous study that the high signal intensity region around the artery on magnetic resonance imaging (MRI) could be a candidate biomarker for detection of arteritis. The present study was conducted to clarify the details of midodrine hydrochloride (MH)-induced arteritis lesions and whether arteritis induced by a mechanism other than the vasodilatory effect, which was evaluated in a previous study, could be detected by MRI. MH is a selective peripherally acting alpha-1 adrenergic receptor agonist, known to induce arteritis due to its vasoconstrictor action, but there is not enough information about MH-induced arteritis. Based on the data obtained under multiple dosing conditions, MH was administered subcutaneously to each rat once daily for 2 days at a dose level of 40 mg/kg/day for MRI assessment. The mesenteric arteries were examined using in vivo MRI at 1 day or 7 days after administration of the final dose and examined histopathologically. On the day after the final dose, high signal intensity region around the artery was observed in animals with minimal perivascular lesions confirmed by histopathology and not observed in an animal without histological changes. On the 7th day after the final dose, no abnormality was observed in histopathological examinations and no high signal intensity regions were observed by MRI in any animal. In conclusion, although further investigation is needed to confirm that high signal intensity is a reliable biomarker for humans, it is suggested that high signal intensity around the artery could be a versatile candidate biomarker with high specificity and sensitivity.

6.
Toxicol Rep ; 9: 1595-1602, 2022.
Article in English | MEDLINE | ID: mdl-36518408

ABSTRACT

A method capable of identifying drug-induced arteritis is highly desirable because no specific and sensitive biomarkers have yet been defined. Although magnetic resonance imaging (MRI) may be used to find a biomarker candidate for drug-induced arteritis, there are no reports on the evaluation of drug-induced arteritis by MRI. The present study was conducted to clarify whether Fenoldopam mesylate (FM)-induced arteritis in rats can be detected by MRI. FM, a dopamine (D1 receptor) agonist, is known to induce arteritis in rats. FM was administered subcutaneously to each rat once daily for 2 days at a dose of 100 mg/kg/day. These arteries were examined with ex vivo high-resolution MRI or postmortem MRI after euthanasia. These arteries were also examined using in vivo MRI on the day after final dosing or 3 days after administration of the final dose. These arteries were examined histopathologically in all experiments. The ex vivo MRI showed low-intensity areas and a high signal intensity region around the artery, and these findings were considered to be erythrocytes infiltrating the arterial wall and perivascular edema, respectively. In the in vivo study, the MRI of the FM-administered group showed a high signal intensity region around the artery. The perivascular edema observed histopathologically was recognized as a high signal intensity region around the artery on the image of MRI. In conclusion, detection of the high signal intensity region around the artery by MRI is considered to be a useful method for identifying arteritis. Although further investigation is needed to be a reliable biomarker, it is suggested that it could be a biomarker candidate.

7.
Differentiation ; 110: 29-35, 2019.
Article in English | MEDLINE | ID: mdl-31590136

ABSTRACT

Development of external genitalia (ExG) has been a topic of long mystery in the field of organogenesis research. Early stage male and female of mouse embryos develop a common genital tubercle (GT) in the perineum whose outgrowth extends distally from the posterior cloacal regions. Concomitant with GT outgrowth, the cloaca is divided into urogenital sinus and anorectum by urorectal septum (URS) internally. The outgrowth of the GT is associated with the formation of endodermal epithelial urethral plate (UP) attached to the ventral epidermis of the GT. Such a common developmental phase is observed until around embryonic day 15.5 (E15.5) morphologically in mouse embryogenesis. Various growth factor genes, such as Fibroblast growth factor (Fgf) and Wnt genes are expressed and function during GT formation. Since the discovery of key growth factor signals and several regulatory molecules, elucidation of their functions has been achieved utilizing mouse developmental models, conditional gene knockout mouse and in vitro culture. Analyses on the phenotypes of such mouse models have revealed that several growth factor families play fundamental roles in ExG organogenesis based on the epithelial-mesenchymal interaction (EMI). More recently, EMI between developing urethral epithelia and its bilateral mesenchyme of later stages is also reported during subsequent stage of androgen-dependent male-type urethral formation in the mouse embryo. Mafb, belonging to AP-1 family and a key androgen-responsive mesenchymal gene, is identified and starts to be expressed around E14.5 when masculinization of the urethra is initiated. Mesenchymal cell condensation and migration, which are regulated by nonmuscle myosin, are shown to be essential process for masculinization. Hence, studies on EMI at various embryonic stages are important not only for early but also for subsequent masculinization of the urethra. In this review, a dynamic mode of EMI for both early and late phases of ExG development is discussed.


Subject(s)
Androgens/metabolism , Endoderm/metabolism , Genitalia/growth & development , Mesoderm/metabolism , Organogenesis/genetics , Animals , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental/genetics , Male
8.
Mol Neurobiol ; 56(1): 658-670, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29785469

ABSTRACT

Prolongation of the T2 relaxation time, an increase in T2-weighted signal intensity (T2-SI), and a decrease in the apparent diffusion coefficient (ADC) calculated from diffusion-weighted images (DWI) on magnetic resonance imaging (MRI) are conventional indicators of the vasogenic (interstitial) or cytotoxic (cellular) cerebral edema that develops after ischemic stroke. However, these parameters obtained on stroke imaging have not given us a precise threshold at which we can determine the viability or vulnerability of the tissue, allowing us to decide on an intervention that will help reversible tissue in the acute phase. Here, we introduce a new indicator-the essential diffusion coefficient or EDC, calculated from the T2-SI and ADC-that permits detection of irreversible brain damage after induction of experimental, focal cerebral ischemia. Our three-vessel occlusion (3-VO) method (Yang et al. Eur Neurol 71:4-18, 2014) was applied to investigate early changes on 7-T MRI. In the 3-VO model, which targets only a part of the cortex, animals seldom die at least within 24 h. The T2-SI and the ADC value were monitored, starting at 60 min after reperfusion, and every 30-60 min, for 10 h after the induction of focal ischemia. The region of interest (ROI) was set in each of the following: (1) the ischemic core (the dead zone); (2) the medial border area (the dying/dead mixed zone, including the ischemic penumbra); (3) the lateral border area (the surviving zone after the ischemic stress, where the rCBF is above the threshold for death); and (4) The intact area (outside the ischemic zone). The diagnosis was made by histological analysis performed 24 h after reperfusion. Significant increases in the T2-SI were observed, in ROI-1 at 1 h, in ROI-2 at 2.5 h, and in ROI-3 at 4 h post-reperfusion (1.10, 1.11, or 1.11; > 1.10, respectively, p < 0.001). Significant reductions in the ADC were also observed in ROI-1, ROI-2, and ROI-3, at 1 h post-reperfusion (0.55, 0.52, or 0.58; < 0.60, respectively, p < 0.001), indicating that both types of cerebral edema develop simultaneously in the acute phase. In the EDC analysis, from 5.0 h post-reperfusion, the value in the dying/dead zone (ROI-1 and ROI-2) was consistently reduced to < 50%, showing repeated, significant differences from the value in the surviving zone (ROI-3). A reduction in the EDC to below 50% indicated irreversible tissue damage, with transformation to cerebral infarction. We could detect a sign of cerebral infarction (initial necrosis-like irreversible lesion) as early as 5.25 h after the onset of ischemia. Although the biological time that depends on the body weight must be different between mice and humans, the earliest irreversible tissue damage or tissue destruction (to have achieved the risk of hemorrhagic transformation) that progressed after invisible or silent cell death in the ultra-acute phase, seems to occur at a similar time point.


Subject(s)
Cerebral Infarction/diagnostic imaging , Cerebral Infarction/diagnosis , Magnetic Resonance Imaging , Animals , Brain Edema/pathology , Cerebral Infarction/surgery , Diffusion Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Vital Signs
9.
Macromol Biosci ; 18(5): e1700391, 2018 05.
Article in English | MEDLINE | ID: mdl-29665311

ABSTRACT

Magnetic resonance angiography is an attractive method for the visualization of the cerebrovasculature, but small-sized vessels are hard to visualize with the current clinically approved agents. In this study, a polymeric contrast agent for the superfine imaging of the cerebrovasculature is presented. Eight-arm polyethylene glycol with a molecular weight of ≈17 000 Da conjugated with a Gd chelate and fluorescein (F-8-arm PEG-Gd) is used. The relaxivity rate is 9.3 × 10-3 m-1 s-1 , which is threefold higher than that of free Gd chelate. Light scattering analysis reveals that F-8-arm PEG-Gd is formed by self-assembly. When the F-8-arm PEG-Gd is intravenously injected, cerebrovasculature as small as 100 µm in diameter is clearly visualized. However, signals are not enhanced when Gd chelate and Gd chelate-conjugated 8-arm PEG are injected. Furthermore, small vasculature around infarct region in rat stroke model can be visualized. These results suggest that F-8-arm PEG-Gd enhances the MR imaging of cerebrovasculature.


Subject(s)
Brain Ischemia/diagnostic imaging , Cerebellum , Cerebrovascular Circulation , Contrast Media , Gadolinium , Magnetic Resonance Angiography , Polyethylene Glycols , Stroke/diagnostic imaging , Animals , Cerebellum/blood supply , Cerebellum/diagnostic imaging , Contrast Media/chemistry , Contrast Media/pharmacology , Gadolinium/chemistry , Gadolinium/pharmacology , Male , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Rats , Rats, Sprague-Dawley
10.
Eur J Vasc Endovasc Surg ; 55(6): 882-887, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29661648

ABSTRACT

OBJECTIVE: The world's smallest calibre "microbiotube" vascular graft was recently developed, with an inner diameter of 0.6 mm. It was formed using in-body tissue architecture (iBTA) and has a high degree of patency and capacity for regeneration in the acute phase, 1 month after implantation. This consecutive study investigated the compatibility and stability of microbiotubes in the chronic phase of implantation for 12 months for potential application in microsurgery. METHODS: This was an in vivo experimental study. The microbiotubes were prepared by embedding the mould subcutaneously in rats for 2 months. Allogenic microbiotubes (n = 16) were implanted into the bilateral femoral arteries (inner diameter 0.5 mm) of eight Wistar rats in an end to end anastomosis manner for 12 months. Follow up 7-Tesla magnetic resonance angiograms were performed every 3 months. Histological observation was performed 12 months after implantation. RESULTS: All patent grafts (n = 12, patency 75%) one month after implantation maintained their patency up to 12 months without any abnormal morphological changes or calcification. Histological observation at 12 months showed that layered α-smooth muscle actin positive cells with a monolayer luminal covering of endothelial cells had formed from the proximal to the distal anastomoses. A thin elastic fibre layer formed in the luminal area. After implantation, all components of the microbiotube were similar to those of a native artery. CONCLUSIONS: This study suggests that microbiotubes have high compatibility, stability, and durability as replacement grafts over the short to mid-term period.


Subject(s)
Blood Vessel Prosthesis , Tissue Engineering , Animals , Biocompatible Materials/pharmacology , Blood Vessel Prosthesis Implantation/methods , Femoral Artery/physiology , Femoral Artery/surgery , Graft Survival , Magnetic Resonance Angiography , Male , Microsurgery/methods , Microvessels/physiology , Microvessels/surgery , Prosthesis Design , Rats, Wistar , Transplantation, Autologous , Vascular Patency/physiology
11.
Sci Rep ; 8(1): 3607, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483617

ABSTRACT

RNF213 is a susceptibility gene for moyamoya disease, yet its exact functions remain unclear. To evaluate the role of RNF213 in adaptation of cerebral blood flow (CBF) under cerebral hypoperfusion, we performed bilateral common carotid artery stenosis surgery using external microcoils on Rnf213 knockout (KO) and vascular endothelial cell-specific Rnf213 mutant (human p.R4810K orthologue) transgenic (EC-Tg) mice. Temporal CBF changes were measured by arterial spin-labelling magnetic resonance imaging. In the cortical area, no significant difference in CBF was found before surgery between the genotypes. Three of eight (37.5%) KO mice died after surgery but all wild-type and EC-Tg mice survived hypoperfusion. KO mice had a significantly more severe reduction in CBF on day 7 than wild-type mice (KO, 29.7% of baseline level; wild-type, 49.3%; p = 0.038), while CBF restoration on day 28 was significantly impaired in both KO (50.0%) and EC-Tg (56.1%) mice compared with wild-type mice (69.5%; p = 0.031 and 0.037, respectively). Changes in the subcortical area also showed the same tendency as the cortical area. Additionally, histological analysis demonstrated that angiogenesis was impaired in both EC-Tg and KO mice. These results are indicative of the essential role of RNF213 in the maintenance of CBF.


Subject(s)
Adenosine Triphosphatases/metabolism , Cerebrovascular Disorders/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenosine Triphosphatases/genetics , Animals , Cerebral Cortex , Cerebrovascular Circulation/genetics , Cerebrovascular Circulation/physiology , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/physiopathology , Exons/genetics , Genetic Predisposition to Disease/genetics , Genotype , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Kaplan-Meier Estimate , Mice , Mice, Knockout , Mice, Transgenic , Ubiquitin-Protein Ligases/genetics
13.
Sci Rep ; 6: 32179, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27535801

ABSTRACT

The bilateral common carotid artery stenosis (BCAS) mouse model, which replicates chronic cerebral hypoperfusion and white matter ischemic lesions, is considered to model some aspects of vascular cognitive impairment. Cerebral blood flow (CBF) changes in the brain surface post-BCAS have been demonstrated by laser speckle flowmetry, but CBF levels in the brain parenchyma remain unknown. Adult C57BL/6J male mice were subjected to BCAS using external microcoils. Brain magnetic resonance angiography (MRA) was conducted to visualize the intracranial main arteries while arterial spin labeling (ASL) was used to measure cortical and subcortical parenchymal CBF levels before and after BCAS. Brain MRA showed anterior circulation flow was substantially decreased until 14 days post-BCAS, which gradually but incompletely recovered over the following 14 days, with probable growth of collaterals from the posterior cerebral artery. ASL showed that cortical and subcortical parenchymal CBF remained decreased at approximately 50% of the baseline level during 1 and 14 days post-BCAS, recovering to approximately 70% at day 28. CBF levels in the parenchyma were lower than the cortical superficial region in the BCAS model and remained decreased without recovery during the first 2 weeks post-BCAS. These results suggest that the BCAS model reliably replicates chronic cerebral hypoperfusion.


Subject(s)
Carotid Stenosis/physiopathology , Cerebrovascular Circulation/physiology , Animals , Brain/diagnostic imaging , Disease Models, Animal , Heart Rate , Magnetic Resonance Angiography , Male , Mice , Mice, Inbred C57BL , Respiratory Rate , Spin Labels
14.
J Artif Organs ; 19(3): 262-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27003431

ABSTRACT

Biotubes, i.e., in vivo tissue-engineered connective tubular tissues, are known to be effective as vascular replacement grafts with a diameter greater than several millimeters. However, the performance of biotubes with smaller diameters is less clear. In this study, MicroBiotubes with diameters <1 mm were prepared, and their patency was evaluated noninvasively by optical coherence tomography (OCT) and magnetic resonance angiography (MRA). MicroBiotube molds, containing seven stainless wires (diameter 0.5 mm) covered with silicone tubes (outer diameter 0.6 mm) per mold, were embedded into the dorsal subcutaneous pouches of rats. After 2 months, the molds were harvested with the surrounding capsular tissues to obtain seven MicroBiotubes (internal diameter 0.59 ± 0.015 mm, burst pressure 4190 ± 1117 mmHg). Ten-mm-long MicroBiotubes were allogenically implanted into the femoral arteries of rats by end-to-end anastomosis. Cross-sectional OCT imaging demonstrated the patency of the MicroBiotubes immediately after implantation. In a 1-month follow-up MRA, high patency (83.3 %, n = 6) was observed without stenosis, aneurysmal dilation, or elongation. Native-like vascular structure was reconstructed with completely endothelialized luminal surfaces, mesh-like elastin fiber networks, regular circumferential orientation of collagen fibers, and α-SMA-positive cells. Although the long-term patency of MicroBiotubes still needs to be confirmed, they may be useful as an alternative ultra-small-caliber vascular substitute.


Subject(s)
Blood Vessel Prosthesis , Tissue Engineering/methods , Animals , Cross-Sectional Studies , Femoral Artery/surgery , Magnetic Resonance Angiography , Rats , Tomography, Optical Coherence , Vascular Patency
15.
J Am Heart Assoc ; 5(2)2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26903005

ABSTRACT

BACKGROUND: Existing rodent models of vascular cognitive impairment (VCI) show abrupt changes in cerebral blood flow (CBF) and do not reliably replicate the clinical pathogenesis of VCI. We therefore aimed to develop a mouse model of VCI where CBF is gradually reduced, followed by subsequent progressive motor and cognitive impairment, after surgical intervention. METHODS AND RESULTS: Adult C57BL/6J male mice were subjected to gradual common carotid artery stenosis (GCAS) surgery by using an ameroid constrictor vessel-constricting device with an inner diameter of 0.75 mm. The common carotid arteries narrowed gradually after gradual constriction of ameroid constrictors over 28 days after GCAS, with subsequent 79.3% area stenosis as a result of smooth muscle cell proliferation and macrophage infiltration in the tunica intima. The 28-day survival rate was 91%. Arterial spin labeling demonstrated gradual and continuous reduction of cortical and subcortical CBF (ratio to the preoperative value) to 54.6% and 51.5%, respectively, over 28 days. However, magnetic resonance angiography showed increment of collateral flow signals in the leptomeningeal artery. Rarefaction and proliferation of astrocytes and microglia, with loss of oligodendrocytes, were found in the white matter at 32 days. Hippocampal neuronal loss was observed in only 25% of GCAS mice, consistent with lack of abnormalities in the Morris water maze test. The rotarod test showed motor impairment, and the Y-maze test showed working memory deficits. CONCLUSIONS: The GCAS model successfully generated gradual and continuous CBF reduction over 28 days, with replication of key histological, radiological, and behavioral features associated with cerebral hypoperfusion leading to VCI.


Subject(s)
Brain/blood supply , Carotid Arteries/physiopathology , Carotid Stenosis/physiopathology , Cerebrovascular Circulation , Cognition Disorders/physiopathology , Dementia, Vascular/physiopathology , Animals , Behavior, Animal , Brain/pathology , Brain/physiopathology , Carotid Arteries/pathology , Carotid Stenosis/etiology , Carotid Stenosis/psychology , Cerebral Angiography/methods , Cognition , Cognition Disorders/etiology , Cognition Disorders/psychology , Collateral Circulation , Dementia, Vascular/psychology , Disease Models, Animal , Disease Progression , Humans , Magnetic Resonance Angiography , Male , Maze Learning , Mice, Inbred C57BL , Motor Activity , Perfusion Imaging/methods , Phenotype , Regional Blood Flow , Rotarod Performance Test , Species Specificity , Time Factors
16.
J Neurosci ; 35(9): 3915-28, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25740520

ABSTRACT

Subcortical white matter (WM) is a frequent target of ischemic injury and extensive WM lesions are important substrates of vascular cognitive impairment (VCI) in humans. However, ischemic stroke rodent models have been shown to mainly induce cerebral infarcts in the gray matter, while cerebral hypoperfusion models show only WM rarefaction without infarcts. The lack of animal models consistently replicating WM infarct damage may partially explain why many neuroprotective drugs for ischemic stroke or VCI have failed clinically, despite earlier success in preclinical experiments. Here, we report a novel animal model of WM infarct damage with cognitive impairment can be generated by surgical implantation of different devices to the right and left common carotid artery (CCA) in C57BL/6J mice. Implantation of an ameroid constrictor to the right CCA resulted in gradual occlusion of the vessel over 28 d, whereas placement of a microcoil to the left CCA induced ∼50% arterial stenosis. Arterial spin labeling showed a gradual reduction of cerebral blood flow over 28 d post operation. Such reductions were more marked in the right, compared with the left, hemisphere and in subcortical, rather than the cortical, areas. Histopathological analysis showed multiple infarct damage in right subcortical regions, including the corpus callosum, internal capsule, hippocampal fimbria, and caudoputamen, in 81% of mice. Mice displaying such damage performed significantly poorer in locomotor and cognitive tests. The current mouse model replicates the phenotypes of human subcortical VCI, including multiple WM infarcts with motor and cognitive impairment.


Subject(s)
Cerebral Infarction/pathology , Cerebral Infarction/psychology , Dementia/pathology , Dementia/psychology , Animals , Blood Pressure/physiology , Brain Ischemia/pathology , Brain Ischemia/psychology , Cerebrovascular Circulation , Constriction, Pathologic , Dementia, Vascular/pathology , Dementia, Vascular/psychology , Heart Rate , Male , Maze Learning , Mice , Mice, Inbred C57BL , Postural Balance , Stroke, Lacunar/pathology , Stroke, Lacunar/psychology
17.
Neurosci Lett ; 589: 150-2, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25578950

ABSTRACT

The rodent gustatory cortex is located in the anterior part of the insular cortex, which is near the dorsal part of the rhinal vein (RHV) and the intersection of the anterior and posterior regions of the middle cerebral artery (MCA). Thus, the intersection between the RHV and MCA is used as a landmark for the rodent gustatory cortex. In our previous study, we employed functional magnetic resonance imaging (MRI) to demonstrate that tastants evoked bilateral responses in the rodent insular cortices, but that these representations were asymmetrical between the hemispheres. In the present study, to clarify the observed asymmetrical responses, we performed magnetic resonance angiography in a 7.0-Tesla MRI scanner to determine the anatomical position of the rodent gustatory cortex, which was identified using the intersection of the MCA and RHV. We successfully observed the intersection while administering carbogen as an inhaled gas and found that the intersection in the left hemisphere is more anterior compared to that in the right hemisphere. Taken together with the previous functional MRI results, this result indicates that the gustatory representation in relation to the intersection may be identically conserved in the insular cortex of both hemispheres; therefore, the rodent gustatory cortex may be asymmetrically located between the left and right hemispheres. The result also suggests that this landmark location needs to be verified when investigating gustatory representations and responses.


Subject(s)
Cerebral Cortex/anatomy & histology , Taste/physiology , Animals , Cerebral Cortex/blood supply , Magnetic Resonance Angiography , Male , Middle Cerebral Artery , Nose/blood supply , Rats, Sprague-Dawley , Veins
18.
ScientificWorldJournal ; 2014: 159103, 2014.
Article in English | MEDLINE | ID: mdl-25202714

ABSTRACT

Understanding cerebral oxygen metabolism is of great importance in both clinical diagnosis and animal experiments because oxygen is a fundamental source of brain energy and supports brain functional activities. Since small animals such as rats are widely used to study various diseases including cerebral ischemia, cerebrovascular diseases, and neurodegenerative diseases, the development of a noninvasive in vivo measurement method of cerebral oxygen metabolic parameters such as oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) as well as cerebral blood flow (CBF) and cerebral blood volume (CBV) has been a priority. Although positron emission tomography (PET) with (15)O labeled gas tracers has been recognized as a powerful way to evaluate cerebral oxygen metabolism in humans, this method could not be applied to rats due to technical problems and there were no reports of PET measurement of cerebral oxygen metabolism in rats until an (15)O-O2 injection method was developed a decade ago. Herein, we introduce an intravenous administration method using two types of injectable (15)O-O2 and an (15)O-O2 gas inhalation method through an airway placed in the trachea, which enables oxygen metabolism measurements in rats.


Subject(s)
Cerebral Cortex/metabolism , Oxygen Consumption , Oxygen/metabolism , Positron-Emission Tomography , Administration, Inhalation , Animals , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain Infarction/metabolism , Brain Infarction/pathology , Cerebral Cortex/blood supply , Cerebral Cortex/pathology , Cerebrovascular Circulation , Male , Oxygen/administration & dosage , Oxygen Radioisotopes/administration & dosage , Rats
19.
Bioconjug Chem ; 25(7): 1243-51, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-24927375

ABSTRACT

Noninvasive in vivo imaging of transplanted stem cells is an effective method to clarify the mechanisms involved in stem cell transplantation therapy. We labeled rat mesenchymal stem cells (MSCs) with water-soluble magnetic resonance imaging (MRI) contrast agent poly(vinyl alcohol)-gadolinium (PVA-Gd) in order to ascertain the fate of transplanted MSCs in vivo. PVA-Gd was retained and localized in the cytosolic compartment of MSCs for a longer period of time. The effect of PVA-Gd labeling on MSC proliferation was much less than that of the commercially available contrast agent ProHance, and the labeled MSCs were found to have osteoblastic differentiation ability. To study the MSC lifetime in vivo, MSCs were seeded and trapped in the cytocompatible three-dimensional porous scaffolds of Spongel and transplanted. The MRI signal attributed to MSCs was eliminated from the transplanted site in 14 days. Because free PVA-Gd was rapidly eliminated from the site, this signal reduction indicated MSC death in the transplantation site. The low efficiency of MSC transplantation for ischemic tissue may be due to their short lifetime, making it important to develop highly effective stem cell transplantation systems that address cell number, injection position, and cell formulation (suspension, sheet, and aggregates). Our cell survival tracking system would be a very powerful tool to this end and would be applicable in clinical cell therapies.


Subject(s)
Cell Movement/physiology , Cell Tracking/methods , Heterocyclic Compounds , Ischemia/pathology , Magnetic Resonance Imaging/methods , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Organometallic Compounds , Animals , Cell Differentiation , Cell Movement/drug effects , Cell Survival , Cells, Cultured , Contrast Media , Gadolinium , Injections, Intramuscular , Ischemia/therapy , Male , Rats , Rats, Inbred F344
20.
Phys Med Biol ; 57(23): 7873-92, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23151851

ABSTRACT

In dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI), an arterial input function (AIF) is usually obtained from a time-concentration curve (TCC) of the cerebral artery. This study was aimed at developing an alternative technique for reconstructing AIF from TCCs of multiple brain regions. AIF was formulated by a multi-exponential function using four parameters, and the parameters were determined so that the AIF curves convolved with a model of tissue response reproduced the measured TCCs for 20 regions. Systematic simulations were performed to evaluate the effects of possible error sources. DSC-MRI and positron emission tomography (PET) studies were performed on 14 patients with major cerebral artery occlusion. Cerebral blood flow (CBF) images were calculated from DSC-MRI data, using our novel method alongside conventional AIF estimations, and compared with those from (15)O-PET. Simulations showed that the calculated CBF values were sensitive to variations in the assumptions regarding cerebral blood volume. Nevertheless, AIFs were reasonably reconstructed for all patients. The difference in CBF values between DSC-MRI and PET was -2.2 ± 7.4 ml/100 g/min (r = 0.55, p < 0.01) for our method, versus -0.2 ± 8.2 ml/100 g/min (r = 0.47, p = 0.01) for the conventional method. The difference in the ratio of affected to unaffected hemispheres between DSC-MRI and PET was 0.07 ± 0.09 (r = 0.82, p < 0.01) for our method, versus 0.07 ± 0.09 (r = 0.83, p < 0.01) for the conventional method. The contrasts in CBF images from our method were the same as those from the conventional method. These findings suggest the feasibility of assessing CBF without arterial blood signals.


Subject(s)
Arteries/physiology , Cerebrovascular Circulation , Contrast Media , Magnetic Resonance Imaging/methods , Regional Blood Flow , Female , Humans , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...