Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 846683, 2022.
Article in English | MEDLINE | ID: mdl-35350753

ABSTRACT

Votucalis is a biologically active protein in tick (R. appendiculatus) saliva, which specifically binds histamine with high affinity and, therefore, has the potential to inhibit the host's immunological responses at the feeding site. We hypothesized that scavenging of peripherally released endogenous histamine by Votucalis results in both anti-itch and anti-nociceptive effects. To test this hypothesis, adult male mice were subjected to histaminergic itch, as well as peripheral nerve injury that resulted in neuropathic pain. Thus, we selected models where peripherally released histamine was shown to be a key regulator. In these models, the animals received systemic (intraperitoneal, i.p.) or peripheral transdermal (subcutaneous, s.c. or intraplantar, i.pl.) administrations of Votucalis and itch behavior, as well as mechanical and thermal hypersensitivity, were evaluated. Selective histamine receptor antagonists were used to determine the involvement of histamine receptors in the effects produced by Votucalis. We also used the spontaneous object recognition test to confirm the centrally sparing properties of Votucalis. Our main finding shows that in histamine-dependent itch and neuropathic pain models peripheral (s.c. or i.pl.) administration of Votucalis displayed a longer duration of action for a lower dose range, when compared with Votucalis systemic (i.p.) effects. Stronger anti-itch effect was observed after co-administration of Votucalis (s.c.) and antagonists that inhibited peripheral histamine H1 and H2 receptors as well as central histamine H4 receptors indicating the importance of these histamine receptors in itch. In neuropathic mice, Votucalis produced a potent and complete anti-nociceptive effect on mechanical hypersensitivity, while thermal (heat) hypersensitivity was largely unaffected. Overall, our findings further emphasize the key role for histamine in the regulation of histaminergic itch and chronic neuropathic pain. Given the effectiveness of Votucalis after peripheral transdermal administration, with a lack of central effects, we provide here the first evidence that scavenging of peripherally released histamine by Votucalis may represent a novel therapeutically effective and safe long-term strategy for the management of these refractory health conditions.

2.
Photobiomodul Photomed Laser Surg ; 39(10): 654-660, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34662523

ABSTRACT

Background: We present a pilot study of near-infrared (NIR) 1068 nm transcranial photobiomodulation therapy (PBM-T). Impact upon motor function, memory, and processing speed in healthy individuals, older than 45 years of age, was evaluated. Methods: PBM-T was performed at home using a transcranial phototherapy device, a helmet that comprised 14 air cooled light emitting diode panel arrays, with a peak wavelength of 1068 nm, full width at half maximum bandwidth of 60 nm and total average optical output power of 3.8 W. The device was used for 6 min twice daily on age-matched middle-aged subjects with normal intellectual function. The US Food and Drug Administration (FDA)-approved computerized assessment tool Automated Neuropsychological Assessment Metrics (ANAM) was adopted to quantify a series of cognitive and motor activities in the participating groups. Results: A significant improvement in motor function, memory performance, and processing speed was observed in healthy individuals with PBM-T compared to the placebo group. No adverse effects were reported. Conclusions: PBM-T may be a promising new approach to improve memory in healthy middle-aged individuals. ClinicalTrials.gov ID: NCT04568057.


Subject(s)
Cognition , Low-Level Light Therapy , Aging , Humans , Infrared Rays , Middle Aged , Pilot Projects , United States
3.
Brain Res Bull ; 163: 72-83, 2020 10.
Article in English | MEDLINE | ID: mdl-32707262

ABSTRACT

Hippocampal atrophy and pathology are common in ageing-related disorders and associated with cognitive impairment and dementia. We explored whether environmental enrichment (EE) ameliorated the pathological sequelae in the hippocampus subsequent to chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Seventy-four male C57BL/6 J mice underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either standard housing conditions (std), limited 3 -h exposure to EE per day (3 h) or full-time exposure to EE (full) for 3 months. Four months after surgery, the hippocampus was examined for the extent of vascular brain injury and neuronal and glial changes. Results showed that long-term BCAS induced strokes, most often in CA1 subfield, reduced 40-50 % CA1 neurons (P < 0.01) and increased microglia/macrophage in CA1-CA3 subfields (P < 0.02). Remarkably, both 3 h and full-time EE regimes attenuated hippocampal neuronal death and repressed recurrent strokes with complete prevention of larger infarcts in mice on full-time EE (P < 0.01). Full-time EE also reduced astrocytic clasmatodendrosis and microglial/macrophage activation in all CA subfields. Our results suggest that exposure to EE differentially reduces long-term hypoperfusive hippocampal damage. The implementation of even limited EE may be beneficial for patients diagnosed with vascular cognitive impairment.


Subject(s)
Carotid Stenosis/pathology , Cerebral Infarction/pathology , Environment , Hippocampus/pathology , Neuroglia/pathology , Neurons/pathology , Animals , Carotid Stenosis/psychology , Cell Count/methods , Cerebral Infarction/psychology , Cerebral Infarction/therapy , Housing, Animal , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Time Factors
4.
J Cereb Blood Flow Metab ; 38(1): 151-165, 2018 01.
Article in English | MEDLINE | ID: mdl-28273725

ABSTRACT

White matter (WM) disintegration is common in the older population and is associated with vascular cognitive impairment (VCI). This study explored the effects of environmental enrichment (EE) on pathological sequelae in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Male C57BL/6 J mice underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either standard housing conditions (std), limited 3 h exposure to EE per day (3 h) or full-time exposure to EE (full) for 12 weeks. At 13 weeks after surgery, cognitive testing was performed using a three-dimensional 9-arm radial maze. At 16 weeks after surgery, nesting ability was assessed in each mouse immediately before euthanasia. Brains retrieved after perfusion fixation were examined for WM pathology. BCAS caused WM changes, as demonstrated by corpus callosum atrophy and greater WM disintegrity. BCAS also caused impaired nesting ability and cognitive function. These pathological changes and working memory deficits were attenuated, more so by limited rather than full-time exposure to EE regime. Our results suggest that limited exposure to EE delays the onset of WM degeneration. Therefore, the implementation of even limited EE may be beneficial for patients diagnosed with VCI.


Subject(s)
Dementia, Vascular/pathology , Environment , Housing, Animal , White Matter/pathology , Animals , Carotid Stenosis/complications , Cerebrovascular Circulation , Dementia, Vascular/etiology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
5.
J Pharm Pharmacol ; 67(9): 1306-15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25877296

ABSTRACT

OBJECTIVES: The Jordanian 'Melissa', (Aloysia citrodora) has been poorly studied both pharmacologically and in the clinic. Essential oils (EO) derived from leaves of A. citrodora were obtained by hydrodistillation, analysed by gas chromatography-mass spectrometry (GC-MS) and were investigated for a range of neurobiological and pharmacological properties, as a basis for potential future use in drug discovery. METHODS: A selection of central nervous system (CNS) receptor-binding profiles was carried out. Antioxidant activity and ferrous iron-chelating assays were adopted, and the neuroprotective properties of A. citrodora EO assessed using hydrogen peroxide-induced and ß-amyloid-induced neurotoxicity with the CAD (Cath.-a-differentiated) neuroblastoma cell line. KEY FINDINGS: The major chemical components detected in the A. citrodora EOs, derived from dried and fresh leaves, included limonene, geranial, neral, 1, 8-cineole, curcumene, spathulenol and caryophyllene oxide, respectively. A. citrodora leaf EO inhibited [(3) H] nicotine binding to well washed rat forebrain membranes, and increased iron-chelation in vitro. A. citrodora EO displays effective antioxidant, radical-scavenging activities and significant protective properties vs both hydrogen peroxide- and ß-amyloid-induced neurotoxicity. CONCLUSIONS: A. citrodora EO displays a range of pharmacological properties worthy of further investigation to isolate the compounds responsible for the observed neuroactivities, to further analyse their mode of action and determine their clinical potential in neurodegenerative diseases.


Subject(s)
Neuroprotective Agents/pharmacology , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Plant Oils/pharmacology , Verbenaceae/chemistry , Acyclic Monoterpenes , Animals , Antioxidants/pharmacology , Cell Line, Tumor , Cyclohexanols/pharmacology , Cyclohexenes/pharmacology , Eucalyptol , Free Radical Scavengers/pharmacology , Limonene , Monoterpenes/pharmacology , Neuroblastoma/drug therapy , Palau , Polycyclic Sesquiterpenes , Prosencephalon/drug effects , Rats , Sesquiterpenes/pharmacology , Terpenes/pharmacology
6.
Front Syst Neurosci ; 6: 54, 2012.
Article in English | MEDLINE | ID: mdl-22811660

ABSTRACT

The role of the histamine H(3) receptor (H(3)R) in anxiety is controversial, due to limitations in drug selectivity and limited validity of behavioral tests used in previous studies. In the present report, we describe two experiments. In the first one, Wistar rats were treated with an H(3)R agonist (methimepip), and exposed to an open-field. In the second one, Balb/c mice were treated with H(3)R agonist (methimepip) or antagonist (JNJ-5207852), and exposed to an open space 3D maze which is a modified version of the radial-arm maze. C57BL/6J saline treated mice were included for comparisons. When exposed to an empty open field, Wistar rats spent more time in the outer area and made very low number of brief crossings in the central area. However, when an object occupied the central area, rats crossed frequently into and spent a long time in the central area. Administration of a range of different doses of methimepip (selective H(3)R agonist) reduced the entries into the central area with a novel object, indicating enhanced avoidance response. In the 3D maze, both Balb/c and C57BL/6J saline-treated mice crossed frequently onto the bridges that radiate from the central platform but only C57BL/6J mice crossed onto the arms which extend the bridges. This suggests that Balb/c mice are more anxious than C57BL/6J mice. Neither methimepip nor JNJ-5207852 (selective H(3)R antagonist/inverse agonist) induced entry into the arms of the maze, indicative of lack of anxiolytic effects.

7.
Psychopharmacology (Berl) ; 177(1-2): 1-14, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15205870

ABSTRACT

RATIONALE: Neuromedin-U (NmU) is an agonist at NMU1R and NMU2R. The brain distribution of NmU and its receptors, in particular NMU2R, suggests widespread central roles for NmU. In agreement, centrally administered NmU affects feeding behaviour, energy expenditure and pituitary output. Further central nervous system (CNS) roles for NmU warrant investigation. OBJECTIVES: To investigate the CNS role of NmU by mapping NMU1R and NMU2R mRNA and measuring the behavioural, endocrine, neurochemical and c-fos response to intracerebroventricular (i.c.v.) NmU. METHODS: Binding affinity and functional potency of rat NmU was determined at human NMU1R and NMU2R. Expression of NMU1R and NMU2R mRNA in rat and human tissue was determined using semi-quantitative reverse-transcription polymerase chain reaction. In in-vivo studies, NmU was administered i.c.v. to male Sprague-Dawley rats, and changes in grooming, motor activity and pre-pulse inhibition (PPI) were assessed. In further studies, plasma endocrine hormones, [DOPAC + HVA]/[dopamine] and [5-HIAA]/[5-HT] ratios and levels of Fos-like immunoreactivity (FLI) were measured 20 min post-NmU (i.c.v.). RESULTS: NmU bound to NMU1R ( K(I), 0.11+/-0.02 nM) and NMU2R ( K(I), 0.21+/-0.05 nM) with equal affinity and was equally active at NMU1R (EC(50), 1.25+/-0.05 nM) and NMU2R (EC(50), 1.10+/-0.20 nM) in a functional assay. NMU2R mRNA expression was found at the highest levels in the CNS regions of both rat and human tissues. NMU1R mRNA expression was restricted to the periphery of both species with the exception of the rat amygdala. NmU caused a marked increase in grooming and motor activity but did not affect PPI. Further, NmU decreased plasma prolactin but did not affect levels of corticosterone, luteinising hormone or thyroid stimulating hormone. NmU elevated levels of 5-HT in the frontal cortex and hypothalamus, with decreased levels of its metabolites in the hippocampus and hypothalamus, but did not affect dopamine function. NmU markedly increased FLI in the nucleus accumbens, frontal cortex and central amygdala. CONCLUSIONS: These data provide further evidence for widespread roles for NmU and its receptors in the brain.


Subject(s)
Central Nervous System/drug effects , Central Nervous System/metabolism , Membrane Proteins/agonists , Membrane Proteins/metabolism , Neuropeptides/administration & dosage , Receptors, Neurotransmitter/agonists , Receptors, Neurotransmitter/metabolism , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , Injections, Intraventricular , Rats , Rats, Sprague-Dawley , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...