Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 103(3): 1355-1365, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36131535

ABSTRACT

BACKGROUND: The pomegranate (Punica granatum) is an ancient perennial plant species of the Punicaceae family. Its seeds are consumed as food or as juice. Previous studies have noted that pomegranate juice encompasses many active compounds with beneficial effects. The main goals of this work were to study the phenolic components of freeze-dried and reconstituted pomegranate juices obtained from 13 pomegranate genotypes growing in Morocco. RESULTS: We analyzed several pomegranate juices using high-performance liquid chromatography and high-resolution mass spectrometry to determine phenolic compounds. Twenty-seven bio-phenols, belonging to four different classes (phenolic acids, hydrolyzable tannins, anthocyanins, and flavonoids), were identified based on their accurate mass measurements, and quantified. Some encouraging results were obtained. Even though the freeze-drying process introduced a marked degradation of bio-phenols, substantially lowering their levels in the reconstituted fruit juices, these fruit juices were still rich enough in bio-phenols to compete with some fresh fruit juices. The reconstituted juices obtained by rehydration of the lyophilized material still differed enough to enable a statistical classification based on their polyphenol content. A correlation analysis was applied to the polyphenol data to explore correlations and similarities between genotypes. CONCLUSIONS: The results showed that freeze-drying and reconstitution of juices introduced some degradation of the polyphenol content. The overall polyphenolic pattern within the same cultivar, in two different harvesting years, was maintained, however, suggesting the composition stability of the freeze-dried juices produced in this time span. © 2022 Society of Chemical Industry.


Subject(s)
Fruit , Pomegranate , Fruit/chemistry , Fruit and Vegetable Juices/analysis , Pomegranate/metabolism , Anthocyanins/analysis , Antioxidants/chemistry , Phenols/chemistry , Polyphenols/analysis
2.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557875

ABSTRACT

Numerous fungal plant pathogens can infect fresh fruits and vegetables during transit and storage conditions. The resulting infections were mainly controlled by synthetic fungicides, but their application has many drawbacks associated with the threatened environment and human health. Therefore, the use of natural plants with antimicrobial potential could be a promising alternative to overcome the side effects of fungicides. In this regard, this study aimed at evaluating the antifungal activity potential of saffron petal extract (SPE) against three mains important fungal pathogens: Rhizopus stolonifer, Penicillium digitatum and Botritys cinerea, which cause rot decay on the tomato, orange and apple fruits, respectively. In addition, the organic composition of SPE was characterized by attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and its biochemical, and gas chromatography-mass spectrometry (GC-MS) analyses were carried out. The obtained results highlighted an increased inhibition rate of the mycelial growth and spore germination of the three pathogenic fungi with increasing SPE concentrations. The mycelial growth and spore germination were completely inhibited at 10% of the SPE for Rhizopus stolonifer and Penicillium digitatum and at 5% for B. cinerea. Interestingly, the in vivo test showed the complete suppression of Rhizopus rot by the SPE at 10%, and a significant reduction of the severity of grey mold disease (37.19%) and green mold, when applied at 5 and 10%, respectively. The FT-IR spectra showed characteristic peaks and a variety of functional groups, which confirmed that SPE contains phenolic and flavonoid components. In addition, The average value of the total phenolic content, flavonoid content and half-maximal inhibitory concentration (IC50) were 3.09 ± 0.012 mg GAE/g DW, 0.92 ± 0.004 mg QE/g DW and 235.15 ± 2.12 µg/mL, respectively. A volatile analysis showed that the most dominant component in the saffron petal is 2(5H)-Furanone (92.10%). Taken together, it was concluded that SPE could be used as an alternative to antioxidant and antifungal compounds for the control of postharvest diseases in fruits.


Subject(s)
Biological Products , Crocus , Fungicides, Industrial , Penicillium , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Spectroscopy, Fourier Transform Infrared , Fungi , Fruit , Biological Products/pharmacology , Plant Extracts/pharmacology
3.
Int J Food Sci ; 2022: 6786590, 2022.
Article in English | MEDLINE | ID: mdl-36337164

ABSTRACT

Moisture sorption isotherms of five sweet cherry cultivars (Prunus avium L.) at three temperatures of 30°C, 40°C, and 50°C, and water activity range of 0.057-0.898 were determined using the static gravimetric method. The sorption isotherms of all cultivars decreased with increasing temperature, and they all exhibited type II behavior according to the classification of IUPAC (International Union of Pure and Applied Chemistry). The isosteric heat of sorption, differential entropy, spreading pressure, and water surface area were determined, and the energy associated with the sorption processes was defined. The curves were fitted to GAB, PELEG, and ENDERBY models, and the GAB model gave the best fit for the whole set of data. The enthalpy-entropy compensation proved that the process occurs spontaneously and is fully controlled the enthalpy. The spreading pressure value varied with temperature in all sweet cherry cultivars in both the desorption and adsorption processes. The average surface area varied from 78.05 to 214.02 m2/g for desorption and from 49.0 to 204.4 m2/g for adsorption from 30 to 50°C.

4.
Molecules ; 28(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36615378

ABSTRACT

Saffron petals, which are the main by-products of Crocus sativus L. (Iridaceae family), are produced in large quantities and are known for their many beneficial properties. In this regard, this study aims to investigate the phenolic composition and antibacterial properties of hydroethanolic extracts from Crocus sativus L. petals collected from Serghina (province of Boulmane) in Morocco. The phenolic profiles were characterized using high-performance liquid chromatography coupled to a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antibacterial potential was evaluated against four bacterial strains potentially causing food-borne disease (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes) using disc diffusion and broth micro-dilution assays. Results showed that a total of 27 phenolic compounds was detected in the Crocus sativus L. petal extracts, which were assigned to flavonoids (kaempferol, quercetin, isorhamnetin, and myricetin derivatives). The most abundant compound was represented by kaempferol-sophoroside isomer (20.82 mg/g ± 0.152), followed by kaempferol-sophoroside-hexoside (2.63 mg/g ± 0.001). The hydroethanolic extracts of Crocus sativus L. petals demonstrated bactericidal effects against Staphylococcus aureus and Listeria monocetogenes and bacteriostatic effects against Escherichia coli and Salmonella typhimurium. Therefore, the by-product Crocus sativus L. petal extracts might be considered as valuable sources of natural antibacterial agents with potential applications in the food and pharmaceutical industries.


Subject(s)
Crocus , Crocus/chemistry , Kaempferols/chemistry , Flavonoids/chemistry , Antioxidants/analysis , Phenols , Plant Extracts/pharmacology , Plant Extracts/chemistry
5.
Molecules ; 26(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925094

ABSTRACT

In the present study, chromatic coordinates, phenolic acids, flavonoids and antioxidant capacity assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate (ABTS) and lipid peroxidation inhibition capacity (LPIC) essays and their relative IC50 were investigated in 25 fig cultivars growing in Morocco. The aims of this study were to determine (i) the variation in these compounds among light and dark-colored cultivars, (ii) their partitioning between fruit peel and pulp and (iii) to display network connections among these variables. Twelve phenolic compounds (PCs) were isolated in peel extract versus eight in pulp samples. Anthocyanins, mainly cyanidin-3,5-diglucoside and cyanidin-3-O-rutinoside, were the predominant compounds in peels, where the mean concentrations were 75.90 ± 18.76 and 77.97 ± 18.95 µg/g dw, respectively. On the other hand, (-)-epicatechin and cyanidin-3-O-rutinoside were the major compounds in the pulp extracts, where the mean values were 5.23 ± 4.03 and 9.01 ± 5.67 µg/g dw, respectively. A two-dimensional hierarchically clustered heatmap was applied to the dataset to explore correlations in the dataset and similarities between cultivars, without dimensionality reduction. Results showed that anthocyanins, particularly pelargonidin-3-O-rutinoside, cyanidin-3,5-diglucoside and cyanidin-3-O-rutinoside, were the main contributors to the peels' free radical scavenging capacity. This capacity was particularly higher in the peel of dark-colored figs compared to the fruit pulp. The local cultivar "INRA 1301" showed the most promising phenolic profile due to its very high levels of almost all detected PCs, especially (-)-epicatechin, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, cyanidine-3,5-diglucoside, cyanidine-3-O-rutinoside and pelargonidin-3-O-rutinoside (54.66, 141.08, 35.48, 494.08, 478.66, 12.56 µg/g dw, respectively). Having the darkest figs in the collection (L* = 25.72, c* = 22.09 and h° = 20.99), this cultivar has also combined promising IC50 values, which were of 19.85, 40.58 and 124.78 µg/mL for DPPH, ABTS and LPIC essays, respectively.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Ficus/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Chemical Phenomena , Chromatography, High Pressure Liquid , Computational Biology , Dose-Response Relationship, Drug , Molecular Structure , Organ Specificity , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectrophotometry
6.
Plants (Basel) ; 9(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266055

ABSTRACT

This study aimed to explore the main biochemical components and the antioxidant capacity of five strawberry tree fruits using three antioxidant essays within the ecotypic comparison scheme, to find out the most valuable fruit presenting disease-preventing properties. Total phenols, total flavonoids, total anthocyanins, antioxidant activity (DPPH, ABTS, and ß-Carotene bleaching assays), pH, titratable acidity, soluble solids, and moisture content were investigated in five strawberry tree genotypes belonging to several areas in Morocco. Phenolic compounds were also identified using high performance chromatography (HPLC), with a diode array detector (DAD). High significant differences (p ˂ 0.05) were revealed among the examined genotypes regarding their total phenols (25.37-39.06 mg gallic acid equivalents (GAE)/g Dry weight (DW), total flavonoids (3.30-7.07 mg RE/g Dry weight (DW), total anthocyanins (0.15-0.64 mg cya-3-glu/100g Dry weight (DW), pH (2.44-3.92), titratable acidity (0.65-1.01 g malic acid/100g Fresh weight (FW), and soluble solids (14.83-18.53%). The average radical scavenging capacity, assessed using three methods, exhibited the following concentration ranges: 3.33-21.08, 2.25-19.58, and 1.08-13 mg Ascorbic Equivalent (AAE/g Dry weight(DW) for the DPPH scavenging test, ABTS, and ß-carotene bleaching, respectively. Seventeen phenolic compounds were identified in sampled cultivars. Gallocatechol and catechin were found to be the major phenolic compounds. The correlation matrix revealed significant correlations among investigated variables, particularly ABTS and DPPH. The principal component analysis showed that the first three components formed 90.25% of the total variance. The following variables: chlorogenic acid, ellagic acid derivative, ellagic acid, rutin, and cyanidin-30.5-diglucoside, were the most involved in the total variance. The results revealed highly promising physico-biochemical profiles within the studied strawberry tree genotypes.

7.
Microb Pathog ; 139: 103914, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31811889

ABSTRACT

This study aimed at evaluating the antagonistic activity of 16 bacterial strains for the control of brown rot disease caused by Monilinia fructigena, and M. laxa under in vitro and a semi-commercial large-scale trial. These bacterial antagonists' belonging to the genera Alcaligenes, Bacillus, Brevibacterium, Pantoea, Pseudomonas, and Serratia were previously proven effective for control of fire blight of apple. The in vitro dual culture bioassay showed the highest inhibition rates of mycelial growth ranging from 55 to 95% and from 43 to 94% for M. fructigena and M. laxa, respectively. The in vivo bioassay showed moderate and strong inhibition for M. fructigena and M. laxa, respectively. The inhibition rates were dependent on incubation time as well as pathogen virulence. The free-cell bacterial filtrate revealed substantial mycelial growth inhibition ranging from 66 to 86%. The inhibition of conidial germination was from 32 to 78%, suggesting the involvement of metabolites in their biocontrol activity. The antifungal effect of the volatile compounds (VCOs) was observed for all bacteria with mycelial inhibition varying from 12 to 70%. Overall, their efficacy was substantially affected by the nature of the bacterial strains and the modes of action. Taken together, these results underscore that ACBC1 and SF14 for M. fructigena and SP10 and ACBP1 for M. laxa were the most effective bacterial strains. These strains were confirmed effective in a semi-commercial large-scale trial. Interestingly, their efficacies were found to be comparable to those of both commercial BCAs (B. subtilis Y1336 and P. agglomerans P10c), but slightly lower than thiophanate-methyl fungicide. The ability of most bacterial strains to produce lytic enzymes (Amylase, Protease or Cellulase) and lipopeptides (bacillomycin, fengycin, iturin and surfactin) was demonstrated by biochemical and molecular analyzes. Therefore, our findings suggest that the bacterial antagonists ACBC1, SF14, SP10 and ACBP1, have the potential to prevent brown rot disease.


Subject(s)
Alcaligenes faecalis/chemistry , Ascomycota/physiology , Bacillus amyloliquefaciens/chemistry , Fungicides, Industrial/pharmacology , Pantoea/chemistry , Plant Diseases/microbiology , Alcaligenes faecalis/metabolism , Bacillus amyloliquefaciens/metabolism , Fruit/microbiology , Fungicides, Industrial/chemistry , Fungicides, Industrial/metabolism , Malus/microbiology , Pantoea/metabolism
8.
Photosynth Res ; 82(2): 177-86, 2004.
Article in English | MEDLINE | ID: mdl-16151873

ABSTRACT

Estimates of thylakoid electron transport rates (J(e)) from chlorophyll fluorometry are often used in combination with leaf gas exchange measurements to provide detailed information about photosynthetic activity of leaves in situ. Estimating J(e) requires accurate determination of the quantum efficiency of Photosystem II (Phi(P)), which in turn requires momentary light saturation of the Photosystem II light harvesting complex to induce the maximum fluorescence signal (F(M)'). In practice, full saturation is often difficult to achieve, especially when incident photosynthetic photon flux density (Q) is high and energy is effectively dissipated by non-photochemical quenching. In the present work, a method for estimating the true F(M)' under high Q was developed, using multiple light pulses of varying intensity (Q'). The form of the expected relationship between the apparent F(M)' and Q' was derived from theoretical considerations. This allowed the true F(M)' at infinite Q' to be estimated from linear regression. Using a commercially available leaf gas exchange/ chlorophyll fluorescence measurement system, J(e) was compared to gross photosynthetic CO(2) assimilation (A(G)) under conditions where the relationship between J(e) and A(G) was expected to be linear. Both in C(4) leaves (Zea mays) in ambient air and also in C(3) leaves (Gossypium hirsutum) under non-photorespiratory conditions the apparent ratio between J(e) and A(G) declined at high Q when Phi(P) was calculated from F(M)' measured simply using the highest available saturating pulse intensity. When F(M)' was determined using the multiple pulse / linear regression technique, the expected relationship between J(e) and A(G) at high Q was restored, indicating that the Phi(P) estimate was improved. This method of determining F(M)' should prove useful for verifying when saturating pulse intensities are sufficient, and for accurately determining Phi(P) when they are not.

SELECTION OF CITATIONS
SEARCH DETAIL
...