Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 171076, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382611

ABSTRACT

Soft sediment marine benthic ecosystems comprise a diverse community of bacteria, meiofauna and macrofauna, which together support a range of ecosystem processes such as biogeochemical cycling. These ecosystems are also fishing grounds for demersal species that are often caught using bottom trawling. This fishing method can have deleterious effects on benthic communities by causing injury or mortality, and through alteration of sediment properties that in turn influence community structure. Although the impacts of bottom trawling on macrofauna are relatively well studied, less is known about the responses of meiofauna and bacteria to such disturbances, or how bottom trawling impacts benthic ecosystem processes. Quantifying trawling impacts against a background of natural environmental variability is also a challenge. To address these questions, we examined effects of bottom trawling and a range of environmental variables (e.g. water chemistry and physical and biochemical surface sediment properties) on a) bacterial, meiofaunal and macrofaunal community structure and b) benthic ecosystem processes (nutrient fluxes, extracellular enzyme activities and carbon turnover and degradation rates). We also investigated the link between the benthic macrofauna community and the same ecosystem processes. While there was a significant effect of bottom trawling intensity on macrofaunal community structure, the same was not seen for bacterial or meiofaunal community composition, which were more affected by environmental factors, such as surface sediment properties. The labile component of the surface sediment carbon pool was higher at highly trawled sites. Carbon degradation rates, extracellular enzyme activities, oxygen fluxes and some nutrient fluxes were significantly affected by trawling, but ecosystem processes were also strongly linked to the abundance of key bioturbators (Macoma balthica, Halicryptus spinulosus, Scoloplos armiger and Pontoporeia femorata). Although benthic ecosystems were affected by a combination of trawling and natural variability, disentangling these showed that the anthropogenic effects were clearest on the larger component of the community, i.e. macrofauna composition, and on ecosystem processes related to sedimentary carbon.


Subject(s)
Bivalvia , Ecosystem , Animals , Biodiversity , Bacteria , Carbon , Geologic Sediments/chemistry
2.
Sci Rep ; 13(1): 11558, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37464005

ABSTRACT

Eutrophication affects coastal oceans worldwide, modifies primary production and sediment biogeochemistry and, overall, is progressively compromising marine ecosystems' integrity. Because of their known bioturbation ability, sea cucumbers are supposed to be candidates for mitigating benthic eutrophication. To provide insights on this, we investigated differences in organic matter quantity and biochemical composition (as proxies of benthic trophic status) of sediments and feces of the sea cucumber Holothuria tubulosa acclimated in mesocosms at temperatures comprised between natural conditions (14-26 °C) and an extreme of 29 °C (representing the highest anomaly under heat waves in the Mediterrranean Sea). Organic matter features differed significantly between sediments characterized by different trophic statuses and the holothuroid's feces, though with some exceptions. Feces resulted almost always organically enriched when compared with the ambient sediments, though with variable differences in composition in sediments characterized by different initial trophic status. Our results point out that sea cucumbers maintain their bioreactor capacity at all experimental temperatures including the (anomalous) highest one, irrespectively of the available food, suggesting that they could be profitably utilized to mitigate benthic eutrophication also in a warmer Mediterranean Sea.


Subject(s)
Ecosystem , Sea Cucumbers , Animals , Geologic Sediments/chemistry , Temperature , Mediterranean Sea
3.
Biology (Basel) ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35741362

ABSTRACT

Since rising temperature (T) will enhance biochemical reactions and coastal marine sediments are hotspots of carbon cycling, marine heatwaves' (MHWs') intensification caused by climate change will affect coastal biogeochemistry. We investigated the effects of MHWs on sediment organic matter (OM) in a nearshore locality (NW Sardinia, Mediterranean Sea) receiving an artificial warm water plume generating T anomalies of 1.5-5.0 °C. Sediments were collected before and after 3 and 11 weeks from the initial plume release. Both MHWs influenced sedimentary OM quantity, composition, and degradation rates, with major effects associated with the highest T anomaly after 3 weeks. Both MHWs enhanced sedimentary OM contents, with larger effects associated with the highest T anomaly. Phytopigment contents increased in the short term but dropped to initial levels after 11 weeks, suggesting the occurrence of thermal adaptation or stress of microphytobenthos. In the longer term we observed a decrease in the nutritional quality of OM and a slowdown of its turnover mediated by extracellular enzymes, suggestive of a decreased ecosystem functioning. We anticipate that intensification of MHWs will affect benthic communities not only through direct effects on species tolerance but also by altering benthic biogeochemistry and the efficiency of energy transfer towards higher trophic levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...