Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; : 1-12, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35738897

ABSTRACT

Changes in body composition and dietary intake occur following spinal cord injury (SCI). The Geometric Framework for Nutrition (GFN) is a tool that allows the examination of the complex relationships between multiple nutrition factors and health parameters within a single model. This study aimed to utilize the GFN to examine the associations between self-reported macronutrient intakes and body composition in persons with chronic SCI. Forty-eight individuals with chronic SCI were recruited. Participants completed and returned 3- or 5-day self-reported dietary recall sheets. Dietary intake of macronutrients (fats, proteins, and carbohydrates) were analysed. Anthropometric measures (circumferences), dual-energy x-ray absorptiometry (DXA), and magnetic resonance imaging (MRI) were used to assess whlole-body composition. Associations between all circumference measures and carbohydrates were observed. Among MRI measures, only significant associations between subcutaneous adipose tissue and protein x carbohydrate as well as carbohydrates alone were identified. Carbohydrates were negatively associated with several measures of fat mass as measured by DXA. Overall, carbohydrates appear to play an important role in body composition among individuals with SCI. Higher carbohydrate intake was associated with lower fat mass. Additional research is needed to determine how carbohydrate intake influences body composition and cardiometabolic health after SCI.

2.
Ann Clin Transl Neurol ; 9(2): 232-238, 2022 02.
Article in English | MEDLINE | ID: mdl-35068086

ABSTRACT

A male with C7 complete tetraplegia participated in 14 weeks of body weight supported treadmill training (BWSTT) combined with spinal cord epidural stimulation (SCES), 4 weeks of no intervention, and two more weeks of BWSTT + SCES. The participant presented with unstable resting seated blood pressure (BP; 131/66 mmHg). After retrospective analysis, resting systolic BP decreased and diastolic BP increased, yielding a safe mean arterial BP. There was a fivefold increase in BWSTT bouts per session, and percentage of body weight support decreased to 69%. BWSTT + SCES safely and effectively regulated resting BP and mitigated symptoms of orthostatic intolerance. These effects were not maintained after 4 weeks without training.


Subject(s)
Blood Pressure/physiology , Exercise Therapy , Neurological Rehabilitation , Quadriplegia/physiopathology , Quadriplegia/therapy , Spinal Cord Stimulation , Adult , Combined Modality Therapy , Epidural Space , Humans , Male
3.
Top Spinal Cord Inj Rehabil ; 27(1): 23-35, 2021.
Article in English | MEDLINE | ID: mdl-33814881

ABSTRACT

Over two-thirds of persons with spinal cord injury (SCI) experience neurogenic obesity-induced cardiometabolic syndrome (CMS) and other chronic comorbidities. Obesity is likely to impede social and recreational activities, impact quality of life, and impose additional socioeconomic burdens on persons with SCI. Advances in imaging technology facilitate the mapping of adiposity and its association with the cardiometabolic profile after SCI. Central adiposity or central obesity is characterized by increased waist (WC) and abdominal circumferences (AC) as well as visceral adipose tissue (VAT). A number of studies, while relying on expensive imaging techniques, have reported direct associations of both central obesity and VAT in imposing significant health risks after SCI. The mechanistic role of central obesity on cardiometabolic heath in persons with SCI has yet to be identified, despite the knowledge that it has been designated as an independent risk factor for cardiometabolic dysfunction and premature mortality in other clinical populations. In persons with SCI, the distribution of adipose tissue has been suggested to be a function of sex, level of injury, and age. To date, there is no SCI-specific WC or AC cutoff value to provide anthropometric prediction of VAT and diagnostic capability of persons at risk for central obesity, CMS, and cardiovascular disease after SCI. The purpose of the current review is to summarize the factors contributing to visceral adiposity in persons with SCI and to develop an SCI-specific anthropometric prediction equation for this population. Furthermore, a proposed WC cutoff will be discussed as a surrogate index for central obesity, CMS, and cardiovascular disorders after SCI.


Subject(s)
Anthropometry/methods , Cardiometabolic Risk Factors , Intra-Abdominal Fat/diagnostic imaging , Intra-Abdominal Fat/metabolism , Obesity/diagnostic imaging , Obesity/metabolism , Spinal Cord Injuries/complications , Age Factors , Humans , Predictive Value of Tests , Sex Factors
4.
Eur J Appl Physiol ; 121(8): 2143-2163, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33891156

ABSTRACT

PURPOSE: Visceral adipose tissue (VAT) is associated with cardiometabolic disease risk in able-bodied (AB) populations. However, the underlying mechanisms of VAT-induced disease risk are unknown in persons with spinal cord injury (SCI). Potential mechanisms of VAT-induced cardiometabolic dysfunction in persons with SCI include systemic inflammation, liver adiposity, mitochondrial dysfunction, and anabolic deficiency. Moreover, how exercise interventions impact these mechanisms associated with VAT-induced cardiometabolic dysfunction are still being explored. METHODS: A search for relevant scientific literature about the effects of exercise on VAT and cardiometabolic health was conducted on the PubMed database. Literature from reference lists was also included when appropriate. RESULTS: Both aerobic and resistance exercise training beneficially impact health and VAT mass via improving mitochondrial function, glucose effectiveness, and inflammatory signaling in SCI and AB populations. Specifically, aerobic exercise appears to also modulate cellular senescence in AB populations and animal models, while resistance exercise seems to augment anabolic signaling in persons with SCI. CONCLUSIONS: The current evidence supports regular engagement in exercise to reduce VAT mass and the adverse effects on cardiometabolic health in persons with SCI. Future research is needed to further elucidate the precise mechanisms by which VAT negatively impacts health following SCI. This will likely facilitate the development of rehabilitation protocols that target VAT reduction in persons with SCI.


Subject(s)
Cardiometabolic Risk Factors , Exercise/physiology , Intra-Abdominal Fat/metabolism , Spinal Cord Injuries/rehabilitation , Humans , Intra-Abdominal Fat/physiopathology , Spinal Cord Injuries/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...