Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979192

ABSTRACT

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.

2.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853911

ABSTRACT

Background: White matter loss is a well-documented phenomenon in Alzheimer's disease (AD) patients that has been recognized for decades. However, the underlying reasons for the failure of oligodendrocyte progenitor cells (OPCs) to repair myelin deficits in these patients remain elusive. A single nucleotide polymorphism (SNP) in Clusterin has been identified as a risk factor for late-onset Alzheimer's disease and linked to a decrease in white matter integrity in healthy adults, but its specific role in oligodendrocyte function and myelin maintenance in Alzheimer's disease pathology remains unclear. Methods: To investigate the impact of Clusterin on OPCs in the context of Alzheimer's disease, we employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease. Results: Our findings demonstrate that Clusterin, a risk factor for late-onset AD, is produced by OPCs and inhibits their differentiation into oligodendrocytes. Specifically, we observed upregulation of Clusterin in OPCs in the 5xFAD mouse model of AD. We also found that the phagocytosis of debris, including amyloid beta (Aß), myelin, and apoptotic cells leads to the upregulation of Clusterin in OPCs. In vivo experiments confirmed that Aß oligomers stimulate Clusterin upregulation and that OPCs are capable of phagocytosing Aß. Furthermore, we discovered that Clusterin significantly inhibits OPC differentiation and hinders the production of myelin proteins. Finally, we demonstrate that Clusterin inhibits OPC differentiation by reducing the production of IL-9 by OPCs. Conclusion: Our data suggest that Clusterin may play a key role in the impaired myelin repair observed in AD and could serve as a promising therapeutic target for addressing AD-associated cognitive decline.

3.
Nat Neurosci ; 27(5): 873-885, 2024 May.
Article in English | MEDLINE | ID: mdl-38539014

ABSTRACT

Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.


Subject(s)
Aging , Alzheimer Disease , Disease Models, Animal , Energy Metabolism , Microglia , Triggering Receptor Expressed on Myeloid Cells-1 , Animals , Mice , Aging/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Cognition/physiology , Energy Metabolism/physiology , Hippocampus/metabolism , Hippocampus/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics
4.
Proc Natl Acad Sci U S A ; 120(24): e2303760120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37276426

ABSTRACT

Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aß) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aß deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aß-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aß clearance in AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Neurodegenerative Diseases/pathology , Disease Models, Animal , Amyloidosis/pathology , Mice, Transgenic , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , CARD Signaling Adaptor Proteins/genetics
5.
Alzheimers Dement ; 19(11): 4908-4921, 2023 11.
Article in English | MEDLINE | ID: mdl-37061460

ABSTRACT

INTRODUCTION: Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis. METHODS: We generated and investigated 5xFAD Inpp5dfl/fl Cx3cr1Ert2Cre mice to ascertain the function of microglial SHIP-1 signaling in response to amyloid beta (Aß)-mediated pathology. RESULTS: SHIP-1 deletion in microglia led to substantially enhanced recruitment of microglia to Aß plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aß engulfment when compared to microglia from Cre-negative 5xFAD Inpp5dfl/fl littermate controls. DISCUSSION: These results define SHIP-1 as a pivotal regulator of microglial responses during Aß-driven neurological disease and suggest that targeting SHIP-1 may offer a promising strategy to treat Alzheimer's disease. HIGHLIGHTS: Inpp5d deficiency in microglia increases plaque-associated microglia numbers. Loss of Inpp5d induces activation and phagocytosis transcriptional pathways. Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion. Genetic ablation of Inpp5d protects against plaque-induced neuronal dystrophy.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Microglia/metabolism , Mice, Transgenic , Neurodegenerative Diseases/pathology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Risk Factors , Plaque, Amyloid/pathology , Disease Models, Animal
6.
Elife ; 122023 01 03.
Article in English | MEDLINE | ID: mdl-36594818

ABSTRACT

Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Mice , Animals , Brain Injuries, Traumatic/metabolism , Brain Concussion/metabolism , Brain Concussion/pathology , Brain Injuries/metabolism , Aging/genetics , Aging/metabolism , Meninges/pathology , Mice, Inbred C57BL , Microglia/metabolism , Brain/metabolism , Disease Models, Animal
8.
Brain Behav Immun ; 108: 80-97, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36343752

ABSTRACT

Perturbations to the in utero environment can dramatically change the trajectory of offspring neurodevelopment. Insults commonly encountered in modern human life such as infection, toxins, high-fat diet, prescription medications, and others are increasingly linked to behavioral alterations in prenatally-exposed offspring. While appreciation is expanding for the potential consequence that these triggers can have on embryo development, there is a paucity of information concerning how the crucial maternal-fetal interface (MFI) responds to these various insults and how it may relate to changes in offspring neurodevelopment. Here, we found that the MFI responds both to an inflammatory state and altered serotonergic tone in pregnant mice. Maternal immune activation (MIA) triggered an acute inflammatory response in the MFI dominated by interferon signaling that came at the expense of ordinary development-related transcriptional programs. The major MFI compartments, the decidua and the placenta, each responded in distinct manners to MIA. MFIs exposed to MIA were also found to have disrupted sex-specific gene expression and heightened serotonin levels. We found that offspring exposed to MIA had sex-biased behavioral changes and that microglia were not transcriptionally impacted. Moreover, the combination of maternal inflammation in the presence of pharmacologic inhibition of serotonin reuptake further transformed MFI physiology and offspring neurobiology, impacting immune and serotonin signaling pathways alike. In all, these findings highlight the complexities of evaluating diverse environmental impacts on placental physiology and neurodevelopment.


Subject(s)
Placenta , Prenatal Exposure Delayed Effects , Male , Pregnancy , Mice , Animals , Female , Humans , Placenta/metabolism , Serotonin/metabolism , Neurobiology , Inflammation/metabolism
9.
Cell ; 185(22): 4135-4152.e22, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36257314

ABSTRACT

Recent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aß) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aß deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD). Disruption of SYK signaling in this AD model was further shown to impede the development of disease-associated microglia (DAM), alter AKT/GSK3ß-signaling, and restrict Aß phagocytosis by microglia. Conversely, receptor-mediated activation of SYK limits Aß load. We also found that SYK critically regulates microglial phagocytosis and DAM acquisition in demyelinating disease. Collectively, these results broaden our understanding of the key innate immune signaling molecules that instruct beneficial microglial functions in response to neurotoxic material.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Microglia/pathology , Phagocytosis
10.
Nat Commun ; 11(1): 4524, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913280

ABSTRACT

Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.


Subject(s)
Brain Injuries/physiopathology , Gliosis/physiopathology , Glymphatic System/physiology , Meninges/physiopathology , Animals , Brain Injuries/complications , Brain Injuries/pathology , Brain Injuries/therapy , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Gliosis/etiology , Gliosis/pathology , Gliosis/prevention & control , Glymphatic System/pathology , Humans , Male , Meninges/pathology , Mice , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/therapeutic use
11.
Immunol Rev ; 297(1): 225-246, 2020 09.
Article in English | MEDLINE | ID: mdl-32588460

ABSTRACT

The amyloid hypothesis has dominated Alzheimer's disease (AD) research for almost 30 years. This hypothesis hinges on the predominant clinical role of the amyloid beta (Aß) peptide in propagating neurofibrillary tangles (NFTs) and eventual cognitive impairment in AD. Recent research in the AD field has identified the brain-resident macrophages, known as microglia, and their receptors as integral regulators of both the initiation and propagation of inflammation, Aß accumulation, neuronal loss, and memory decline in AD. Emerging studies have also begun to reveal critical roles for distinct innate immune pathways in AD pathogenesis, which has led to great interest in harnessing the innate immune response as a therapeutic strategy to treat AD. In this review, we will highlight recent advancements in our understanding of innate immunity and inflammation in AD onset and progression. Additionally, there has been mounting evidence suggesting pivotal contributions of environmental factors and lifestyle choices in AD pathogenesis. Therefore, we will also discuss recent findings, suggesting that many of these AD risk factors influence AD progression via modulation of microglia and immune responses.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Immunity, Innate , Microglia/metabolism
12.
Nature ; 580(7805): 647-652, 2020 04.
Article in English | MEDLINE | ID: mdl-32350463

ABSTRACT

Neurodevelopment is characterized by rapid rates of neural cell proliferation and differentiation followed by massive cell death in which more than half of all recently generated brain cells are pruned back. Large amounts of DNA damage, cellular debris, and by-products of cellular stress are generated during these neurodevelopmental events, all of which can potentially activate immune signalling. How the immune response to this collateral damage influences brain maturation and function remains unknown. Here we show that the AIM2 inflammasome contributes to normal brain development and that disruption of this immune sensor of genotoxic stress leads to behavioural abnormalities. During infection, activation of the AIM2 inflammasome in response to double-stranded DNA damage triggers the production of cytokines as well as a gasdermin-D-mediated form of cell death known as pyroptosis1-4. We observe pronounced AIM2 inflammasome activation in neurodevelopment and find that defects in this sensor of DNA damage result in anxiety-related behaviours in mice. Furthermore, we show that the AIM2 inflammasome contributes to central nervous system (CNS) homeostasis specifically through its regulation of gasdermin-D, and not via its involvement in the production of the cytokines IL-1 and/or IL-18. Consistent with a role for this sensor of genomic stress in the purging of genetically compromised CNS cells, we find that defective AIM2 inflammasome signalling results in decreased neural cell death both in response to DNA damage-inducing agents and during neurodevelopment. Moreover, mutations in AIM2 lead to excessive accumulation of DNA damage in neurons as well as an increase in the number of neurons that incorporate into the adult brain. Our findings identify the inflammasome as a crucial player in establishing a properly formed CNS through its role in the removal of genetically compromised cells.


Subject(s)
Brain/growth & development , DNA Damage , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Animals , Animals, Newborn , Anxiety/pathology , Anxiety/physiopathology , Anxiety/psychology , Behavior, Animal/physiology , Brain/cytology , Brain/metabolism , Brain/pathology , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/deficiency , Caspase 1/metabolism , Cell Death , DNA-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Maze Learning/physiology , Mice , Mutation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Phosphate-Binding Proteins/metabolism
13.
J Neurophysiol ; 122(2): 862-871, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31268813

ABSTRACT

Diabetes mellitus-induced hyperglycemia is associated with a number of pathologies such as retinopathy, nephropathy, delayed wound healing, and diabetic peripheral neuropathy (DPN). Approximately 50% of patients with diabetes mellitus will develop DPN, which is characterized by disrupted sensory and/or motor functioning, with treatment limited to pain management. Zebrafish (Danio rerio) are an emerging animal model used to study a number of metabolic disorders, including diabetes. Diabetic retinopathy, nephropathy, and delayed wound healing have all been demonstrated in zebrafish. Recently, our laboratory has demonstrated that following the ablation of the insulin-producing ß-cells of the pancreas (and subsequent hyperglycemia), the peripheral nerves begin to show signs of dysregulation. In this study, we take a different approach, taking advantage of the transdermal absorption abilities of zebrafish larvae to extend the period of hyperglycemia. Following 5 days of 60 mM d-glucose treatment, we observed motor axon defasciculation, disturbances in perineurial glia sheath formation, decreased myelination of motor axons, and sensory neuron mislocalization. This study extends our understanding of the structural changes of the peripheral nerve following induction of hyperglycemia and does so in an animal model capable of potential DPN drug discovery in the future.NEW & NOTEWORTHY Zebrafish are emerging as a robust model system for the study of diabetic complications such as retinopathy, nephropathy, and impaired wound healing. We present a novel model of diabetic peripheral neuropathy in zebrafish in which the integrity of the peripheral nerve is dysregulated following the induction of hyperglycemia. By using this model, future studies can focus on elucidating the underlying molecular mechanisms currently unknown.


Subject(s)
Axons , Diabetic Neuropathies , Hyperglycemia/complications , Peripheral Nerves , Sensory Receptor Cells , Animals , Axons/metabolism , Axons/pathology , Behavior, Animal/physiology , Diabetic Neuropathies/etiology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/pathology , Disease Models, Animal , Hyperglycemia/chemically induced , Larva , Peripheral Nerves/metabolism , Peripheral Nerves/pathology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...