Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 466(1): 69-76, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25423367

ABSTRACT

Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), a Mendelian inflammatory disease which displays remarkable clinical and biochemical overlap with congenital viral infection. SAMHD1 (SAM domain and HD domain-containing protein 1) has also been defined as an HIV-1 restriction-factor that, through a novel triphosphohydrolase activity, inhibits early stage HIV-1 replication in myeloid-derived dendritic cells (MDDCs), macrophages and resting CD4+ T-cells. The potent activity of SAMHD1 is likely to be the subject of a variety of regulatory mechanisms. Knowledge of proteins that interact with SAMHD1 may not only enhance our understanding of the pathogenesis of AGS, but may also provide further details on the link between the regulation of cellular dNTPs and HIV-1 restriction. In the present study, we used a yeast two-hybrid screen and pull-down analysis followed by MS to identify the eukaryotic elongation factor 1A1 (eEF1A1) as a potential interaction partner of SAMHD1. This interaction was confirmed by unbiased co-immunoprecipitation and demonstrated in situ by a proximity ligation assay (PLA). We show that this interaction is enhanced in mutant SAMHD1 cell lines and suggest that eEF1A1 may mediate SAMHD1 turnover by targeting it to the proteosome for degradation through association with Cullin4A and Rbx1.


Subject(s)
Autoimmune Diseases of the Nervous System/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Monomeric GTP-Binding Proteins/metabolism , Nervous System Malformations/metabolism , Peptide Elongation Factor 1/metabolism , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cullin Proteins/genetics , Cullin Proteins/metabolism , Fibroblasts/pathology , Humans , Immunoprecipitation , Monocytes/metabolism , Monocytes/pathology , Monomeric GTP-Binding Proteins/genetics , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Peptide Elongation Factor 1/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteolysis , SAM Domain and HD Domain-Containing Protein 1 , Signal Transduction , Transcription Elongation, Genetic , Two-Hybrid System Techniques
2.
Nature ; 480(7377): 379-82, 2011 Nov 06.
Article in English | MEDLINE | ID: mdl-22056990

ABSTRACT

SAMHD1, an analogue of the murine interferon (IFN)-γ-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-α. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.


Subject(s)
HIV-1/physiology , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Allosteric Regulation , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Dendritic Cells/metabolism , Dendritic Cells/virology , Deoxyadenine Nucleotides/metabolism , Deoxycytosine Nucleotides/metabolism , Deoxyguanine Nucleotides/metabolism , Humans , Hydrolysis , Models, Biological , Models, Molecular , Monomeric GTP-Binding Proteins/genetics , Myeloid Cells/virology , Nucleoside-Triphosphatase/genetics , Protein Structure, Tertiary , Reverse Transcription , SAM Domain and HD Domain-Containing Protein 1 , Thymine Nucleotides/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication
3.
Nat Struct Mol Biol ; 12(2): 144-51, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15665873

ABSTRACT

The C-terminal domain (CTD) of the large subunit of RNA polymerase II is a platform for mRNA processing factors and links gene transcription to mRNA capping, splicing and polyadenylation. Pcf11, an essential component of the mRNA cleavage factor IA, contains a CTD-interaction domain that binds in a phospho-dependent manner to the heptad repeats within the RNA polymerase II CTD. We show here that the phosphorylated CTD exists as a dynamic disordered ensemble in solution and, by induced fit, it assumes a structured conformation when bound to Pcf11. In addition, we detected cis-trans populations for the CTD prolines, and found that only the all-trans form is selected for binding. These data suggest that the recognition of the CTD is regulated by independent site-specific modifications (phosphorylation and proline cis-trans isomerization) and, probably, by the local concentration of suitable binding sites.


Subject(s)
RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/metabolism , Amino Acid Sequence , Circular Dichroism , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Molecular Structure , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...