Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Cancer Res ; 2(10): 557-66, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15498930

ABSTRACT

Exposure to environmental radiation and the application of new clinical modalities, such as radioimmunotherapy, have heightened the need to understand cellular responses to low dose and low-dose rate ionizing radiation. Many tumor cell lines have been observed to exhibit a hypersensitivity to radiation doses <50 cGy, which manifests as a significant deviation from the clonogenic survival response predicted by a linear-quadratic fit to higher doses. However, the underlying processes for this phenomenon remain unclear. Using a gel microdrop/flow cytometry assay to monitor single cell proliferation at early times postirradiation, we examined the response of human A549 lung carcinoma, T98G glioma, and MCF7 breast carcinoma cell lines exposed to gamma radiation doses from 0 to 200 cGy delivered at 0.18 and 22 cGy/min. The A549 and T98G cells, but not MCF7 cells, showed the marked hypersensitivity at doses <50 cGy. To further characterize the low-dose hypersensitivity, we examined the influence of low-dose radiation on cell cycle status and apoptosis by assays for active caspase-3 and phosphatidylserine translocation (Annexin V binding). We observed that caspase-3 activation and Annexin V binding mirrored the proliferation curves for the cell lines. Furthermore, the low-dose hypersensitivity and Annexin V binding to irradiated A549 and T98G cells were eliminated by treating the cells with pifithrin, an inhibitor of p53. When p53-inactive cell lines (2800T skin fibroblasts and HCT116 colorectal carcinoma cells) were examined for similar patterns, we found that there was no hyperradiosensitivity and apoptosis was not detectable by Annexin V or caspase-3 assays. Our data therefore suggest that low-dose hypersensitivity is associated with p53-dependent apoptosis.


Subject(s)
Adenocarcinoma , Apoptosis/physiology , Apoptosis/radiation effects , Lung Neoplasms , Tumor Suppressor Protein p53/physiology , Brain Neoplasms , Breast Neoplasms , Cell Division/physiology , Cell Division/radiation effects , Cell Line, Tumor/physiology , Cell Line, Tumor/radiation effects , Fibroblasts/cytology , Fibroblasts/radiation effects , Glioma , Humans , Radiation Dosage , Radiation, Ionizing
2.
Mol Carcinog ; 39(3): 164-72, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14991746

ABSTRACT

Wortmannin (WM) is a potent inhibitor of the catalytic sub-unit of DNA-PK, which is involved in one pathway of DNA double-strand break (DSB) rejoining, and of ATM, which functions upstream in the p53 signaling pathway. WM is known to be an efficient radiosensitizer in a variety of mammalian cell types, to inhibit DSB rejoining following exposure to supralethal doses (> or =30 Gy) of ionizing radiation, and to abrogate the induction of p53 at early times after radiation exposure. We report here that WM is a more effective radiosensitizer in A549 human lung carcinoma cells than in normal human fibroblasts (NHFs). In addition, WM strongly inhibits DSB rejoining in A549 cells exposed to relatively low doses (e.g., 10 Gy) of ionizing radiation, without having any detectable effect in NHFs. We further demonstrate that WM significantly potentiates the induction of p21WAF1, a p53-regulated gene that encodes for a key mediator of cell-cycle/growth arrest, when determined at late times (e.g., 24 h) after irradiation. This late WM-dependent potentiation of p21WAF1 induction following radiation exposure is observed in NHFs and in the p53 wild-type tumor cell lines A549, A172, and SKNSH, but not in the p53-deficient tumor cell lines DLD-1, HeLa, and SKNSH-E6. We conclude that: (i) inhibition of DSB rejoining by WM may be an important contributor to its radiosensitizing effect in A549 cells but not in NHFs; and (ii) radiosensitization of p53-proficient human cells by WM may in part be associated with the delayed induction of p21WAF1, which can lead to a sustained growth-arrested phenotype resembling senescence.


Subject(s)
Androstadienes/pharmacology , Cyclins/genetics , DNA Damage , DNA Repair , Gene Expression Regulation/drug effects , Radiation-Sensitizing Agents/pharmacology , Base Sequence , Blotting, Western , Cell Line , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21 , DNA Primers , Humans , RNA, Messenger/genetics , Wortmannin
SELECTION OF CITATIONS
SEARCH DETAIL
...