Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 85(3): 1705-10, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23278172

ABSTRACT

The deamidation of asparagine (Asn or N) residues in proteins is a common post-translational chemical modification. The identification of deamidation sites and determination of the degree of deamidation have been carried out by the combination of peptide mapping and mass spectrometry. However, when a peptide fragment contains multiple amides, such analysis becomes difficult and sometimes impossible. In this report, a quantitative method for estimating the deamidation rate of a specific amide in a protein is presented without using peptide mapping. Five Asn residues of a recombinant fragment antigen binding (rFab) (mouse IgG1, κ) were mutated to a serine (Ser) residue, one by one, through site-directed mutagenesis, and the single-residue deamidation rates of the original rFab and the mutants were determined using capillary isoelectric focusing. The difference of the rate between the original rFab and the mutant was assumed to be equal to the deamidation rate of the specific Asn residue, which had been mutated. Among five mutants established, three major deamidation sites-H chain Asn135, L chain Asn157, and L chain Asn161, using the Kabat numbering system-were identified, accounting for 66%, 29%, and 7% of the single-residue deamidation of the original rFab, respectively. Although the former two have been known by peptide mapping, the last one, which resides on the same tryptic peptide that carries one of the former two, previously has not been identified. For the first time, the deamidation rate constants of the three sites were estimated to be 10.5 × 10(-3) h(-1), 4.6 × 10(-3) h(-1), and 1.1 × 10(-3) h(-1) in 0.1 M phosphate buffer, pH 7.5 at 37 °C, respectively, with corresponding half-life of 2.8 days, 6.3 days, and 27 days. The method should be applicable to any recombinant proteins.


Subject(s)
Immunoglobulin Fab Fragments/metabolism , Immunoglobulin kappa-Chains/metabolism , Mutation/physiology , Animals , Electrophoresis, Capillary/methods , Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/genetics , Immunoglobulin kappa-Chains/analysis , Immunoglobulin kappa-Chains/genetics , Isoelectric Focusing/methods , Mice
2.
Anal Chem ; 77(2): 564-72, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15649054

ABSTRACT

A new method for the quantitative evaluation of molecular interactions that are observed in electrophoresis is described. One component taking part in the interaction is labeled with a fluorescent dye and is subjected to capillary zone electrophoresis with fluorescence detection in the presence or absence of an unlabeled interacting component. Fluorescence signals are collected at constant time intervals, and the electropherograms are converted to represent the fluorescence signal against mobility. After baseline subtraction, the first statistical moment of fluorescence signals on the mobility axis is calculated. This moment represents the average mobility of a labeled component. The change in the mobility moment in the presence and absence of the unlabeled component is used to evaluate the degree of saturation of the binding site of a labeled molecule with an unlabeled molecule. Mixtures of fluorescence-labeled protein (Fab' fragment of antibody or concanavalin A) and its unlabeled interacting partner (alpha(1)-antitrypsin or succinylated ovalbumin, respectively) at various concentrations were injected into a bare-silica capillary, and zone electrophoresis was carried out. The change in the mobility moment of the fluorescence-labeled molecules was used to determine the dissociation constants of the complexes. The determined constants are comparable to those obtained by a well-established method, that is, an analysis based on the peak height of the complex. Since the mobility moment analysis is not affected by the total intensity of the signals, it should be advantageous in analyses in which multiple capillaries are used, in which the injection volume and the sensitivity of detection might be more difficult to control at constant values. The mobility moment analysis also has advantages for the analysis of heterogeneous samples, since the identification of peaks is not necessarily required.


Subject(s)
Electrophoresis, Capillary/methods , Protein Interaction Mapping/methods , Antigen-Antibody Reactions , Concanavalin A/metabolism , Fluorescent Dyes/chemistry , Immunoglobulin Fab Fragments/metabolism , Movement , Ovalbumin/metabolism , alpha 1-Antitrypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...