Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
JCI Insight ; 5(8)2020 04 23.
Article in English | MEDLINE | ID: mdl-32324170

ABSTRACT

In type 1 diabetes (T1D), autoimmune destruction of pancreatic ß cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, ß cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that ß cell loss, ß cell dysfunction, alterations of ß cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Pancreas/physiopathology , Tissue Culture Techniques , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Tissue Donors , Young Adult
2.
Cell Rep ; 31(1): 107469, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268101

ABSTRACT

Type 2 diabetes is characterized by peripheral insulin resistance and insufficient insulin release from pancreatic islet ß cells. However, the role and sequence of ß cell dysfunction and mass loss for reduced insulin levels in type 2 diabetes pathogenesis are unclear. Here, we exploit freshly explanted pancreas specimens from metabolically phenotyped surgical patients using an in situ tissue slice technology. This approach allows assessment of ß cell volume and function within pancreas samples of metabolically stratified individuals. We show that, in tissue of pre-diabetic, impaired glucose-tolerant subjects, ß cell volume is unchanged, but function significantly deteriorates, exhibiting increased basal release and loss of first-phase insulin secretion. In individuals with type 2 diabetes, function within the sustained ß cell volume further declines. These results indicate that dysfunction of persisting ß cells is a key factor in the early development and progression of type 2 diabetes, representing a major target for diabetes prevention and therapy.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/pathology , Aged , Blood Glucose/metabolism , Female , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Resistance/physiology , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Male , Middle Aged , Pancreas/metabolism
3.
J Cell Biol ; 219(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-32050025

ABSTRACT

Centrosomes must resist microtubule-mediated forces for mitotic chromosome segregation. During mitotic exit, however, centrosomes are deformed and fractured by those same forces, which is a key step in centrosome disassembly. How the functional material properties of centrosomes change throughout the cell cycle, and how they are molecularly tuned, remain unknown. Here, we used optically induced flow perturbations to determine the molecular basis of centrosome strength and ductility in C. elegans embryos. We found that both properties declined sharply at anaphase onset, long before natural disassembly. This mechanical transition required PP2A phosphatase and correlated with inactivation of PLK-1 (Polo kinase) and SPD-2 (Cep192). In vitro, PLK-1 and SPD-2 directly protected centrosome scaffolds from force-induced disassembly. Our results suggest that, before anaphase, PLK-1 and SPD-2 respectively confer strength and ductility to the centrosome scaffold so that it can resist microtubule-pulling forces. In anaphase, centrosomes lose PLK-1 and SPD-2 and transition to a weak, brittle state that enables force-mediated centrosome disassembly.


Subject(s)
Caenorhabditis elegans/cytology , Centrosome/metabolism , Mitosis , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Centrosome/drug effects , Leupeptins/pharmacology , Mitosis/drug effects , Mitosis/genetics
4.
Biol Open ; 7(1)2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29222174

ABSTRACT

Centrosomes are microtubule-nucleating organelles that facilitate chromosome segregation and cell division in metazoans. Centrosomes comprise centrioles that organize a micron-scale mass of protein called pericentriolar material (PCM) from which microtubules nucleate. During each cell cycle, PCM accumulates around centrioles through phosphorylation-mediated assembly of PCM scaffold proteins. During mitotic exit, PCM swiftly disassembles by an unknown mechanism. Here, we used Caenorhabditis elegans embryos to determine the mechanism and importance of PCM disassembly in dividing cells. We found that the phosphatase PP2A and its regulatory subunit SUR-6 (PP2ASUR-6), together with cortically directed microtubule pulling forces, actively disassemble PCM. In embryos depleted of these activities, ∼25% of PCM persisted from one cell cycle into the next. Purified PP2ASUR-6 could dephosphorylate the major PCM scaffold protein SPD-5 in vitro Our data suggest that PCM disassembly occurs through a combination of dephosphorylation of PCM components and force-driven fragmentation of the PCM scaffold.

SELECTION OF CITATIONS
SEARCH DETAIL