Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 295: 110157, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917664

ABSTRACT

Actinobacillus pleuropneumoniae (APP) causes significant economic losses to the swine industry. Antibiotic treatment can be challenging due to its clinical urgency and the turnover of antimicrobial susceptibility results from the diagnostic laboratory. The aim of this study was to evaluate the vertical transmission of APP within integrated systems as a criterion for optimising antimicrobial treatment in the field, using whole genome sequencing (WGS). Additionally, the genetic variability of Spanish APP isolates has been assessed to decipher antimicrobial resistance (AMR) determinants, toxin presence, serotype, and phenotype/genotype concordance of AMR. A total of 169 isolates from clinical cases of porcine pleuropneumonia with known antimicrobial susceptibility profiles were sequenced. Additionally, 48 NCBI assemblies were included to perform a phylogenetic analysis. Phylogenetic analysis revealed high association between phylogenetic clusters, serotypes, and presence of toxins that are associated within vertically integrated systems by its epidemiological link. Concordance between presence of AMR determinants (genotype) vs in-vitro antimicrobial susceptibility pattern (phenotype) was acceptable for amoxicillin, florfenicol, oxytetracycline, and enrofloxacin using epidemiological cut-off values (ECOFFs), but low concordance was observed for doxycycline and trimethoprim-sulfamethoxazole (T/S). On the other hand, using CLSI clinical breakpoints (CBPs), concordance was acceptable for florfenicol and enrofloxacin and not evaluated for doxycycline, oxytetracycline, trimethoprim-sulfamethoxazole (T/S), and amoxicillin because no CBP are available for them. Finally, WGS has demonstrated the clonality between isolates that shared a common origin (grandmother's farm) and resistance phenotype, suggesting vertical transmission of this pathogen and supporting the use of the epidemiological approach as a good criterion to optimise the antimicrobial use.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Anti-Bacterial Agents , Microbial Sensitivity Tests , Phylogeny , Swine Diseases , Whole Genome Sequencing , Actinobacillus pleuropneumoniae/genetics , Actinobacillus pleuropneumoniae/drug effects , Actinobacillus pleuropneumoniae/classification , Actinobacillus pleuropneumoniae/isolation & purification , Swine , Animals , Actinobacillus Infections/microbiology , Actinobacillus Infections/veterinary , Actinobacillus Infections/transmission , Swine Diseases/microbiology , Swine Diseases/transmission , Anti-Bacterial Agents/pharmacology , Pleuropneumonia/microbiology , Pleuropneumonia/veterinary , Genotype , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Spain/epidemiology
2.
Antibiotics (Basel) ; 12(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37998776

ABSTRACT

Monitoring the antimicrobial susceptibility of last-resource antimicrobials for veterinary pathogens is urgently needed from a one-health perspective. The objective of this study was to analyze the antimicrobial susceptibility trends of Spanish porcine bacteria to quinolones, cephalosporins, and polymyxins. Isolates of Actinobacillus pleuropneumoniae, Pasteurella multocida, and Escherichia coli were isolated from sick pigs from 2019 to 2022. An antimicrobial susceptibility test was determined based on the minimal inhibitory concentration (MIC) following an internationally accepted methodology. The MIC categorization was based on distributing the range of MIC values in four categories, with category one being the most susceptible (lowest MIC value) and category four the least susceptible (highest MIC value). Moreover, clinical susceptibility (susceptible/non-susceptible) was also determined according to the CLSI and EUCAST clinical breakpoints. A logistic and multinomial logistic regression model was used to analyze the susceptibility data for dichotomized and categorized MIC data, respectively, for any pair of antimicrobial/microorganism. In general terms, the antimicrobial susceptibility of pig bacteria to these antimicrobials remained stable or increased in the last four years in Spain. In the case of A. pleuropneumoniae and quinolones, a significant temporal trend was observed where isolates from 2020 had significantly increased odds of being more susceptible than isolates from 2019. In the case of E. coli and polymyxins, a significant temporal trend was observed where isolates from 2020 and 2021 had significantly increased odds of being more susceptible than isolates from 2019 and 2020, respectively. Finally, significant odds of being less susceptible were only observed for cephalosporins and E. coli for 2020 versus 2019, stagnating for the rest of study period. These results provide sound data on critically important antimicrobials in swine medicine.

3.
Porcine Health Manag ; 9(1): 47, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858281

ABSTRACT

BACKGROUND: Antimicrobial resistance is one of the most important health challenges in humans and animals. Antibiotic susceptibility determination is used to select the most suitable drug to treat animals according to its success probability following the European legislation in force for these drugs. We have studied the antibiotic susceptibility pattern (ASP) of Actinobacillus pleuropneumoniae (APP) and Pasteurella multocida (PM) isolates, collected during the period 2019-2022 in Spain. ASP was measured by determining minimum inhibitory concentration using standardized laboratory methods and its temporal trend was determined by logistic regression analysis of non-susceptible/susceptible isolates using clinical breakpoints. RESULTS: It was not observed any significant temporal trends for susceptibility of Actinobacillus pleuropneumoniae to ceftiofur, florfenicol, sulfamethoxazole/trimethoprim, tulathromycin and tildipirosin during the study period (p > 0.05). Contrarily, a significant temporal trend (p < 0.05) was observed for quinolones (enrofloxacin and marbofloxacin), tetracyclines (doxycycline and oxyteracycline), amoxicillin, tiamulin and tilmicosin. On the other hand, it was not observed any significant temporal trends for susceptibility of Pasteurella multocida to quinolones (enrofloxacin and marbofloxacin), amoxicillin, ceftiofur, florfenicol and macrolides (tildipirosin, tulathromycin and tilmicosin) during the study period (p > 0.05). Contrarily, a significant temporal trend (p < 0.05) was observed for tetracyclines (oxyteracycline), tiamulin and sulfamethoxazole/trimethoprim. CONCLUSIONS: In general terms, pig pathogens (APP and PM) involved in respiratory diseases analysed herein appeared to remain susceptible or tended to increase susceptibility to antimicrobials over the study period (2019-2022), but our data clearly showed a different pattern in the evolution of antimicrobial susceptibility for each combination of drug and microorganism. Our results highlight that the evolution of antimicrobial susceptibility must be studied in a case-by-case situation where generalization for drug families and bacteria is not possible even for bacteria located in the same ecological niche.

4.
Antibiotics (Basel) ; 11(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35625283

ABSTRACT

Antimicrobial susceptibility testing is necessary to carry out antimicrobial stewardship but a limited number of drugs belonging to each antimicrobial family has to be tested for technical limitations and economic resources. In this study, we have determined the minimal inhibitory concentration, using microdilution following international standards (CLSI), for 490 Actinobacillus pleuropneumoniae, 285 Pasteurella multocida, 73 Bordetella bronchiseptica, 398 Streptococcus suis and 1571 Escherichia coli strains from clinical cases collected in Spain between 2018 and 2020. The antimicrobial susceptibility pattern was deciphered using a principal component analysis for each bacterium and a matrix correlation (high > 0.8, medium 0.5−0.8 and low < 0.5) was obtained for each pair of antimicrobials. No significant associations were observed between MIC patterns for different antimicrobial families, suggesting that co-selection mechanisms are not generally present in these porcine pathogens. However, a high correlation was observed between the fluroquinolones (marbofloxacin and enrofloxacin) for all mentioned pathogens and for ceftiofur and cefquinome for E. coli and S. suis. Moreover, a significant association was also observed for tetracyclines (doxycycline and oxytetracycline) and B. bronchiseptica and tildipirosin/tulathromycin for P. multocida. These results suggest that generally, a representative drug per antimicrobial class cannot be selected, however, for some drug−bug combinations, MIC values from one representative drug could be extrapolated to the whole antimicrobial family.

5.
Antibiotics (Basel) ; 9(11)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105780

ABSTRACT

The aim of this study was to set up antimicrobial stewardship for swine respiratory pathogens following the recommendation from the European Medicine Agency. The obtained antimicrobial susceptibility pattern recommended using antimicrobial stewardship for each clinical case instead of treatment guidelines focused on pathogens. Thus, the bacteria are isolated and the MIC values, the clinical interpretation for each antimicrobial (susceptible or resistant), additional information about the distance between the MIC obtained and the clinical breakpoint, and set up for each drug, are represented in the report provided for veterinarians. A graph from green (susceptible) to red (resistant) is enclosed for each antimicrobial and microorganism in the report. The greener, the more susceptible is the strain, and the redder, the less susceptible is the strain for each particular antimicrobial. This information could help veterinarians to select the most suitable antimicrobial from first, second, or last option antimicrobials. Thus, veterinarians should choose the antimicrobial, inside each option, with the best antimicrobial susceptibility pattern that corresponds with the greener status in the report. The information provided in the report could be useful for all clinical cases, caused by a certain bacterium within the same pig production system, if an epidemiological link could be established.

6.
Antibiotics (Basel) ; 9(7)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664493

ABSTRACT

The monitoring of antimicrobial susceptibility of pig pathogens is critical to optimize antimicrobial treatments and prevent development of resistance with a one-health approach. The aim of this study was to investigate the antimicrobial susceptibility patterns of swine respiratory pathogens in Spain from 2017 to 2019. Bacterial isolation and identification were carried out following standardized methods from samples coming from sacrificed or recently deceased pigs with acute clinical signs compatible with respiratory tract infections. Minimum inhibitory concentration (MIC) values were determined using the broth microdilution method containing a total of 10 and 7-8 antimicrobials/concentrations respectively, in accordance with the recommendations presented by the Clinical and Laboratory Standards Institute (CLSI). The obtained antimicrobial susceptibility varies between pig respiratory pathogens. Actinobacillus pleuropneumoniae (APP) and Pasteurella multocida (PM) were highly susceptible (≥90%) to ceftiofur, florfenicol and macrolides (tilmicosin, tildipirosin and tulathromycin). However, the antimicrobial susceptibility was intermediate (>60% but <90%) for amoxicillin and enrofloxacin in the case of APP and sulfamethoxazole/trimethropim and tiamulin in the case of PM. Both bacteria showed low (<60%) antimicrobial susceptibility to doxycycline. Finally, Bordetella bronchiseptica was highly susceptible only to tildipirosin and tulathromycin (100%) and its susceptibility for florfenicol was close to 50% and <30% for the rest of the antimicrobial families tested. These results emphasize the need of determining antimicrobial susceptibility in pig respiratory cases in order to optimize the antimicrobial treatment in a case-by-case scenario.

SELECTION OF CITATIONS
SEARCH DETAIL
...