Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 224: 111556, 2021 11.
Article in English | MEDLINE | ID: mdl-34425475

ABSTRACT

Reactions of the anticancer active dirhodium tetraacetate (1), Rh2(AcO)4 (AcO- = CH3COO-), with the amino acid histidine (HHis) and human serum albumin (HSA) were monitored over time and different metal: ligand ratios using UV-vis spectroscopy and/or electro-spray ionization mass spectrometry. Initially, histidine formed 1:1 and 1:2 adducts in aqueous solutions. The crystal structure of Rh2(AcO)4(L-HHis)2·2H2O (2) confirmed the axial coordination of histidine imidazole groups (average Rh-Naxial 2.23 Å). These adducts, however, were found to be unstable in solution over time (24 h). Heating Rh2(AcO)4 -histidine solutions to 40 °C (near body temperature) or 95 °C accelerated the formation of RhII2(AcO)2(His)2 and RhIII(His)2(AcO) complexes. The corresponding pH change from neutral to mildly acid (pH 4-5) indicates deprotonation of histidine NH3+ groups due to coordination to Rh ions, which simultaneously bind to histidine COO- groups, as evidenced by 13C NMR spectroscopy. In the case of HSA with 16 histidine and one cysteine residues, UV-vis spectroscopy indicates that mono- and di-histidine HSA adducts with Rh2(AcO)4 are formed. X-ray absorption spectroscopy showed almost the same Rh-Rh distance (2.41 ± 0.01 Å) for the Rh2(AcO)4 units as in 2, and a contribution from an axial thiol coordination (Rh-Saxial 2.62 ± 0.05 Å). The Rh2(AcO)4 - HSA complex was found to decompose partially (~15%) over 24 h at ambient temperature. The partial decomposition of Rh2(AcO)4 both through coordination to histidine or to human serum albumin, the most abundant protein in blood plasma, is a factor to consider for its efficacy as a potential anticancer agent.


Subject(s)
Histidine/chemistry , Organometallic Compounds/chemistry , Rhodium/chemistry , Serum Albumin, Human/chemistry , Antineoplastic Agents/chemistry , Humans , Hydrogen-Ion Concentration , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Structure , Spectrometry, Mass, Electrospray Ionization/methods
2.
Dalton Trans ; 50(17): 5968-5977, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33949526

ABSTRACT

Recently, diimine Re(i) tricarbonyl complexes have attracted great interest due to their promising cytotoxic effects. Here, we compare the cytotoxicity and cellular uptake of two Re(i) compounds fac-[(Re(CO)3(bpy)(H2O)](CF3SO3) (1) and Na(fac-[(Re(CO)3(bpy)(S2O3)])·H2O (bpy = 2,2'-bipyridine) (2). The Re-thiosulfate complex in 2 was characterized in two solvated crystal structures {Na(fac-[Re(CO)3(bpy)(S2O3)])·1.75H2O·C2H5OH}4 (2 + 0.75H2O + C2H5OH)4 and (fac-[Re(CO)3(bpy)(H2O)]) (fac-[Re(CO)3(bpy)(S2O3)])·4H2O (3). The cytotoxicity of 1 and 2 was tested in the MDA-MB-231 breast cancer cell line and compared with that of cisplatin. The cellular localization of the Re(i) complexes was investigated using synchrotron-based X-ray fluorescence microscopy (XFM). The results show that replacement of the aqua ligand with thiosulfate renders the complex less toxic most likely by distrupting its cellular entry. Therefore, thiosulfate could potentially have a similar chemoprotective effect against diimine fac-Re(CO)3 complexes as it has against cisplatin.


Subject(s)
Rhenium/chemistry , Thiosulfates , Kinetics , Ligands , Models, Molecular
3.
J Biol Inorg Chem ; 25(5): 759-776, 2020 08.
Article in English | MEDLINE | ID: mdl-32583226

ABSTRACT

The potential chemotherapeutic properties coupled to photochemical transitions make the family of fac-[Re(CO)3(N,N)X]0/+ (N,N = a bidentate diimine such as 2,2'-bipyridine (bpy); X = halide, H2O, pyridine derivatives, PR3, etc.) complexes of special interest. We have investigated reactions of the aqua complex fac-[Re(CO)3(bpy)(H2O)](CF3SO3) (1) with potential anticancer activity with the amino acid L-cysteine (H2Cys), and its derivative N-acetyl-L-cysteine (H2NAC), as well as the tripeptide glutathione (H3A), under physiological conditions (pH 7.4, 37 °C), to model the interaction of 1 with thiol-containing proteins and enzymes, and the impact of such coordination on its photophysical properties and cytotoxicity. We report the syntheses and characterization of fac-[Re(CO)3(bpy)(HCys)]·0.5H2O (2), Na(fac-[Re(CO)3(bpy)(NAC)]) (3), and Na(fac-[Re(CO)3(bpy)(HA)])·H2O (4) using extended X-ray absorption spectroscopy, IR and NMR spectroscopy, electrospray ionization spectrometry, as well as the crystal structure of {fac-[Re(CO)3(bpy)(HCys)]}4·9H2O (2 + 1.75 H2O). The emission spectrum of 1 displays a variance in Stokes shift upon coordination of L-cysteine and N-acetyl-L-cysteine. Laser excitation at λ = 355 nm of methanol solutions of 1-3 was followed by measuring their ability to produce singlet oxygen (1O2) using direct detection methods. The cytotoxicity of 1 and its cysteine-bound complex 2 was assessed using the MDA-MB-231 breast cancer cell line, showing that the replacement of the aqua ligand on 1 with L-cysteine significantly reduced the cytotoxicity of the Re(I) tricarbonyl complex. Probing the cellular localization of 1 and 2 using X-ray fluorescence microscopy revealed an accumulation of 1 in the nuclear and/or perinuclear region, whereas the accumulation of 2 was considerably reduced, potentially explaining its reduced cytotoxicity. Replacing the aqua ligand with cysteine in the antitumor active fac-[Re(CO)3(bpy)(H2O)](CF3SO3) complex significantly reduced its cellular accumulation and cytotoxicity against the MDA-MB-213 breast cancer cell line, shifted its maximum emission to considerably higher energies, and decreased its fluorescence quantum yield.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Cysteine/pharmacology , Rhenium/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbon Monoxide/analysis , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Cysteine/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Rhenium/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Chem Commun (Camb) ; 55(57): 8223-8226, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31215918

ABSTRACT

The cellular distribution of three dirhodium(ii) complexes with a paddlewheel structure was investigated using synchrotron-based X-ray fluorescence microscopy and cell viability studies. Complexes with vacant axial sites displayed cytotoxic activity and nuclear accumulation whereas complexes in which the axial positions were blocked showed little to no toxicity nor uptake.

5.
J Synchrotron Radiat ; 26(Pt 2): 450-461, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30855255

ABSTRACT

The structural differences between the aerobic reaction products of Rh2(AcO)4 (1; AcO- = CH3COO-) with thiols and thiolates in non-aqueous media are probed by X-ray absorption spectroscopy. For this study, ethanethiol, dihydrolipoic acid (DHLA; a dithiol) and their sodium thiolate salts were used. Coordination of simple thiols to the axial positions of Rh2(AcO)4 with Rh-SH bonds of 2.5-2.6 Škeeps the RhII-RhII bond intact (2.41 ± 0.02 Å) but leads to a colour change from emerald green to burgundy. Time-dependent density functional theory (TD-DFT) calculations were performed to explain the observed shifts in the electronic (UV-vis) absorption spectra. The corresponding sodium thiolates, however, break up the Rh2(AcO)4 framework in the presence of O2 to form an oligomeric chain of triply S-bridged Rh(III) ions, each with six Rh-S (2.36 ± 0.02 Å) bonds. The RhIII...RhIII distance, 3.18 ± 0.02 Å, in the chain is similar to that previously found for the aerobic reaction product from aqueous solutions of Rh2(AcO)4 and glutathione (H3A), {Na2[Rh2III(HA)4]·7H2O}n, in which each Rh(III) ion is surrounded by about four Rh-S (2.33 ± 0.02 Å) and about two Rh-O (2.08 ± 0.02 Å). The reaction products obtained in this study can be used to predict how dirhodium(II) tetracarboxylates would react with cysteine-rich proteins and peptides, such as metallothioneins.

6.
Inorg Chem ; 57(20): 12787-12799, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30247895

ABSTRACT

The reaction between antitumor active dirhodium(II) tetraacetate and dl-methionine (HMet) was followed in aqueous solution and showed initially mixtures of 1:1 and 1:2 adducts [Rh2(AcO)4(HMet)(H2O)] (AcO- = CH3COO-) and [Rh2(AcO)4(HMet)2] formed at room temperature (RT), as evidenced by UV-vis spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Rh K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy confirmed methionine thioether binding to the axial positions of the Rh2(AcO)4 cage structure. With excess HMet at RT, stepwise displacement of the acetate groups was observed after some time using ESI-MS. Heating the solution to 40° for 24 h accelerated the substitution reaction leading to stable dirhodium(II) species with two acetate ligands displaced by two methionine groups. The crystal structure of the purple [RhII2(AcO)2(d-Met)(l-Met)]·6H2O compound obtained from the solution revealed tridentate coordination of the methionine ligands to the Rh(II) ions, with the thioether S atoms in equatorial positions. A minor amount of a light orange monomeric [RhIII(Met)2](AcO) complex also formed in the solution was isolated by size exclusion chromatography and identified by ESI-MS. Crystals of [RhIII(d-Met)(l-Met)]Cl·3H2O were prepared by reacting RhCl3 and dl-HMet. The crystal structure showed tridentate binding of the methionine ligands to the Rh(III) ion in a trans-S, N, O arrangement.

7.
J Biol Inorg Chem ; 23(2): 231-239, 2018 03.
Article in English | MEDLINE | ID: mdl-29214420

ABSTRACT

The aerobic reaction between glutathione (H3A) and dirhodium(II) tetraacetate, Rh2(AcO)4 (AcO- = CH3COO-), in aqueous solution (pH 7.4) breaks up the direct RhII-RhII bond and its carboxylate framework, as evidenced by UV-Vis spectroscopy. After purifying the reaction product using size exclusion chromatography, electrospray ionization mass spectrometry (ESI-MS) of the solution showed binuclear [Formula: see text] and [Formula: see text] ions. Evaporation yielded a solid compound, [Formula: see text], for which Rh K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy revealed ~ 2 Rh-O (2.08 ± 0.02 Å) and ~ 4 Rh-S (2.33 ± 0.02 Å) bond distances around each RhIII center, and the RhIII··RhIII distance 3.11 ± 0.02 Å, close to that in dirhodium(III) complexes with three bridging thiolates connecting [Formula: see text] units. The 13C CPMAS NMR spectrum of the RhIII-glutathione complex showed a change ∆δ C > 6 ppm in the chemical shift of the COO- signal, indicating some carboxylate coordination to the Rh(III) ions. This study shows that under aerobic conditions glutathione enables oxidation of Rh2(AcO)4 and thus reduces its antitumor efficiency. The reaction of Rh2(AcO)4 with glutathione was investigated by ESI-MS, UV-Vis, 13C NMR and X-ray absorption spectroscopy, revealing that glutathione breaks down the carboxylate framework enabling oxidization of the [Formula: see text] core to Rh(III) dimeric units, bridged by three thiolates.


Subject(s)
Antineoplastic Agents/chemistry , Glutathione/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Spectrum Analysis/methods , Chromatography, Gel , Hydrogen-Ion Concentration , Oxidation-Reduction
8.
ACS Omega ; 2(9): 6174-6186, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-31457864

ABSTRACT

We have combined results from several spectroscopic techniques to investigate the aerobic reactions of Rh2(AcO)4 (AcO- = CH3COO-) with l-cysteine (H2Cys) and its derivatives d-penicillamine (3,3'-dimethylcysteine, H2Pen), with steric hindrance at the thiol group, and N-acetyl-l-cysteine (H2NAC), with its amino group blocked. Previous investigations have shown that antitumor active dirhodium(II) carboxylates may irreversibly inhibit enzymes containing a thiol group at or near their active sites. Also, cysteine, the only thiol-containing proteinogenic amino acid, interacts in vivo with this class of antitumor compounds, but structural information on the products of such reactions is lacking. In the present study, the reactions of Rh2(AcO)4 and H2L were carried out in aqueous solutions at the pH of mixing (acidic) and at physiological pH, using the different mole ratios 1:2, 1:4, and 1:6, which resulted in the same products in increasing yields. Electrospray ionization mass spectrometry (ESI-MS) indicates formation of dimeric [RhIII 2Pen4]2- or oligomeric {RhIII 2L4} n (L = Cys, NAC) complexes with bridging thiolate groups. Analyses of Rh K edge extended X-ray absorption fine structure (EXAFS) data reveal 3-4 Rh-S and 2-3 Rh-(N/O) bonds around six-coordinated Rh(III) ions at mean distances of 2.33 ± 0.02 and 2.09 ± 0.02 Å, respectively. In the N-acetyl-l-cysteine compound, the RhIII···RhIII distance 3.10 ± 0.02 Å obtained from the EXAFS spectrum supports trithiolate bridges between the Rh(III) ions, as was also found when using glutathione as ligand. In the cysteine and penicillamine complexes, double thiolate bridges join the Rh(III) ions, with the nonbridging Cys2- and Pen2- ligands in tridentate chelating (S,N,O) mode, which is consistent with the ΔδC = 7.3-8.4 ppm shift of the COO- signal in their carbon-13 cross polarization magic angle spinning (CPMAS) NMR spectra. For the penicillamine complex, the 2475.6 eV peak in its S K edge X-ray absorption near edge structure (XANES) spectrum shows partial oxidation, probably caused by peroxide generated from reduction of dissolved O2, of thiolato to sulfenato (S=O) groups, which were also identified by ESI-MS for all three {RhIII 2L4} n compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...