Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(9): 12473-12483, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33864213

ABSTRACT

Desulfurization of liquid fuels mitigates the amount of noxious sulfur oxides and particulates released during fuel combustion. Existing literature on oxidative-adsorptive desulfurization technologies focus on sulfur-in-fuel removal by various materials, but very little information is presented about their desorption kinetics and thermodynamics. Herein, we report for the first time, the mechanism of sulfur desorption from neutral activated alumina saturated with dibenzothiophene sulfone. Batch experiments were conducted to examine the effects of agitation rate, desorption temperature, sulfur content, and eluent type on sulfur desorption efficiencies. Results show enhanced desorption capacities at higher agitation rate, desorption temperature, and initial sulfur content. Desorption efficiency and capacity of acetone were found to be remarkably superior to ethanol, acetone:ethanol (1:1), and acetone:isopropanol (1:1). Desorption kinetics reveal excellent fit of the nonlinear pseudo-second-order equation on desorption data, indicating chemisorption as the rate-determining step. Results of the thermodynamics study show the spontaneous (ΔG° ≤ -2.08 kJ mol-1) and endothermic (ΔH° = 32.35 kJ mol-1) nature of sulfur desorption using acetone as eluent. Maximum regeneration efficiency was attained at 93% after washing the spent adsorbent with acetone followed by oven-drying. Scanning electron microscopy, Fourier transform infrared, and X-ray diffraction spectroscopy analyses reveal the intact and undamaged structure of neutral activated alumina even after adsorbent regeneration. Overall, the present work demonstrates the viability of neutral activated alumina as an efficient and reusable adsorbent for the removal of sulfur compounds from liquid fossil fuels.


Subject(s)
Aluminum Oxide , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Sulfur Oxides , Temperature , Thermodynamics
2.
Sensors (Basel) ; 21(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807738

ABSTRACT

The widespread presence of heavy metals in drinking water sources arises as a major health concern, particularly in developing countries. The development of low-cost and reliable detection techniques is identified as a societal need to provide affordable water quality control. Herein, a bismuth film-coated gold ultramicroelectrode array (BF-UMEA) was used for the detection of Pb(II) and Cd(II) in water samples via square wave anodic stripping voltammetry (SWASV). Experimental parameters such as deposition time, Bi(III) concentration, acetate buffer concentration, pH, square wave frequency, amplitude, and step potential were all varied to determine their effects on the current peak intensities of the target metal ions. Ten-fold excess in the concentration of interferences was found to cause a decrease in the stripping peak areas of Cd(II) and Pb(II) in the following order of magnitude: benzene < NaCl < Ni(II) < Cu(II). Using Box-Behnken design, the optimum SWASV parameters that provided maximum current peak areas were 14.76 Hz (frequency), 50.10 mV (amplitude), and 8.76 mV (step potential). The limits of detection of the as-prepared BF-UMEA were 5 and 7 µg L-1 for Pb(II) and Cd(II), respectively. These results demonstrate the potential use of a BF-UMEA in SWASV for the trace quantification of Pb(II) and Cd(II) in water samples.

3.
Article in English | MEDLINE | ID: mdl-33799443

ABSTRACT

This case study covers the application of the fuzzy optimization in simultaneously satisfying various constraints that include the compliance of ammonia and nitrate concentrations with stringent environmental standards. Essential components in the multi-criteria decision-making analysis is in the utilization of the Box-Behnken design (BBD) response equations, cost equations and the cumulative uncertainty of response towards the sodium chloride dosage, current density and electrolysis time parameters. The energy consumption in the electrochemical oxidation of ammonia plays an essential role in influencing the total operating cost analysis. The determination of boundary limits based on the global optimum resulted in the complete ammonia removal and USD 64.0 operating cost as its maximum boundary limits and the 40.6% ammonia removal and USD 17.1 as its minimum boundary limits. Based on the fuzzy optimal results, the overall satisfaction level incurred a decrease in adhering with a lower ammonia standard concentration (10 mg/L at 80.3% vs. 1.9 mg/L at 76.1%) due to a higher energy consumption requirement. Global optimal fuzzy results showed to be highly cost efficient (232.5% lower) as compared to using BBD alone. This demonstrates the practicality of fuzzy optimization applications in the electrochemical reactions.


Subject(s)
Ammonia , Electrolysis , Electrodes , Nitrates , Oxidation-Reduction
4.
Article in English | MEDLINE | ID: mdl-33809592

ABSTRACT

The ubiquitous occurrence of heavy metals in the aquatic environment remains a serious environmental and health issue. The recovery of metals from wastes and their use for the abatement of toxic heavy metals from contaminated waters appear to be practical approaches. In this study, manganese was recovered from groundwater treatment sludge via reductive acid leaching and converted into spherical aggregates of high-purity MnO2. The as-synthesized MnO2 was used to adsorb Cu(II) and Pb(II) from single-component metal solutions. High metal uptake of 119.90 mg g-1 for Cu(II) and 177.89 mg g-1 for Pb(II) was attained at initial metal ion concentration, solution pH, and temperature of 200 mg L-1, 5.0, and 25 °C, respectively. The Langmuir isotherm model best described the equilibrium metal adsorption, indicating that a single layer of Cu(II) or Pb(II) was formed on the surface of the MnO2 adsorbent. The pseudo-second-order model adequately fit the Cu(II) and Pb(II) kinetic data confirming that chemisorption was the rate-limiting step. Thermodynamic studies revealed that Cu(II) or Pb(II) adsorption onto MnO2 was spontaneous, endothermic, and had increased randomness. Overall, the use of MnO2 prepared from groundwater treatment sludge is an effective, economical, and environmentally sustainable substitute to expensive reagents for toxic metal ion removal from water matrices.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Lead , Manganese Compounds , Oxides , Sewage , Thermodynamics , Water Pollutants, Chemical/analysis
5.
Environ Sci Pollut Res Int ; 26(31): 32407-32419, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31606789

ABSTRACT

Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug, has been detected in effluents of conventional wastewater treatment plants worldwide. The presence of this compound in various water resources even at very low concentrations poses a big threat both to human health and aquatic ecosystems. In this study, the removal of diclofenac from aqueous solution using Fe-Mn binary oxide (FMBO) adsorbents was investigated. FMBO adsorbents were prepared at varying Fe/Mn molar ratios (1:0, 3:1, and 1:1) through simultaneous oxidation and co-precipitation methods. Batch adsorption experiments were conducted to evaluate the effects of important parameters, such as initial DCF concentration, FMBO dosage, solution pH, and Fe/Mn molar ratio, on DCF removal. Acidic to neutral pH conditions were more favorable for DCF adsorption, while increasing initial DCF concentration and adsorbent dosage resulted in higher DCF removal efficiencies for the three oxides. Lower Fe/Mn molar ratio during FBMO synthesis favored higher DCF removals of up to 99% within a wide pH range. Optimization of operating parameters (initial DCF concentration, FMBO dosage, and solution pH) by Box-Behnken design resulted in up to 28.84 mg g-1 DCF removal for 3:1 FMBO. Freundlich isotherm best described the experimental data, indicating that adsorption occurred on heterogeneous adsorbent surface. Chemisorption was the rate-limiting step of the DCF removal, as best described by the pseudo-second-order kinetic model.


Subject(s)
Diclofenac/chemistry , Iron/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Ecosystem , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Oxides/chemistry , Wastewater
6.
Sci Total Environ ; 692: 732-740, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31539981

ABSTRACT

Pharmaceutical active compounds (PhACs) have been detected at significant concentrations in various natural and artificial aquatic environments. In this study, electro membrane bioreactor (eMBR) technology was used to treat simulated municipal wastewater containing widely-used pharmaceuticals namely amoxicillin (AMX), diclofenac (DCF) and carbamazepine (CBZ). The effects of varying current density on the removal of PhACs (AMX, DCF and CBZ) and conventional pollutants (chemical oxygen demand (COD), dissolved organic carbon (DOC), humic substances, ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N) and orthophosphate (PO4-P) species) were examined. High COD and DOC removal efficiencies (~100%) were obtained in all the experimental runs regardless of applied current density. In contrast, enhanced removal efficiencies for AMX, DCF and CBZ were achieved at high current densities. Membrane fouling rate in eMBR with respect to conventional MBR was reduced by 24, 44 and 45% at current densities of 0.3, 0.5 and 1.15 mA/cm2, respectively. The mechanism for pharmaceutical removal in this study proceeded by: (1) charge neutralization between negatively-charged pharmaceutical compounds and positive electro-generated aluminium coagulants to form larger particles and (2) size exclusion by membrane filtration.


Subject(s)
Biofouling , Bioreactors , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Amoxicillin/analysis , Carbamazepine/analysis , Diclofenac/analysis , Electrochemical Techniques , Membranes, Artificial , Waste Disposal, Fluid/instrumentation
7.
Environ Sci Pollut Res Int ; 26(2): 1103-1112, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28477257

ABSTRACT

This study investigates the removal of selected pharmaceuticals, as recalcitrant organic compounds, from synthetic wastewater using an electro-membrane bioreactor (eMBR). Diclofenac (DCF), carbamazepine (CBZ), and amoxicillin (AMX) were selected as representative drugs from three different therapeutic groups such as anti-inflammatory, anti-epileptic, and antibiotic, respectively. An environmentally relevant concentration (10 µg/L) of each compound was spiked into the synthetic wastewater, and then, the impact of appending electric field on the control of membrane fouling and the removal of conventional contaminants and pharmaceutical micropollutants were assessed. A conventional membrane bioreactor (MBR) was operated as a control test. A reduction of membrane fouling was observed in the eMBR with a 44% decrease of the fouling rate and a reduction of membrane fouling precursors. Humic substances (UV254), ammonia nitrogen (NH4-N), and orthophosphate (PO4-P) showed in eMBR removal efficiencies up to 90.68 ± 4.37, 72.10 ± 13.06, and 100%, respectively, higher than those observed in the MBR. A reduction of DCF, CBZ, and AMX equal to 75.25 ± 8.79, 73.84 ± 9.24, and 72.12 ± 10.11%, respectively, was found in the eMBR due to the enhanced effects brought by electrochemical processes, such as electrocoagulation, electrophoresis, and electrooxidation.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Membranes, Artificial , Wastewater/chemistry
8.
J Hazard Mater ; 361: 367-373, 2019 01 05.
Article in English | MEDLINE | ID: mdl-30265905

ABSTRACT

In this study, the viability of using electrocoagulation process as a method for pharmaceuticals removal from real municipal wastewater was demonstrated. Batch experimental runs were performed using a simple laboratory scale electrochemical reactor with aluminium and stainless steel as anode and cathode, respectively. Diclofenac (DCF), carbamazepine (CBZ) and amoxicillin (AMX) were selected as representative of pharmaceuticals frequently detected in the aquatic environment. The effects of varying experimental parameters namely current density (0.3, 0.5 1.15 and 1.8 mA cm-2), initial pharmaceutical concentration (0.01, 4 and 10 mg L-1), electrolysis duration (3, 6 and 19 h) and application mode (continuous vs. intermittent) on pharmaceutical removal efficiencies were evaluated. High pharmaceutical abatement was recorded at elevated current density and prolonged electrolysis duration due to additional electro-generated coagulant species in solution.


Subject(s)
Electrolysis/methods , Models, Theoretical , Pharmaceutical Preparations/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Flocculation
SELECTION OF CITATIONS
SEARCH DETAIL
...