Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Entomol ; 57(3): 893-900, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31891169

ABSTRACT

Plague is a low incidence flea-borne zoonosis that is often fatal if treatment is delayed or inadequate. Outbreaks occur sporadically and human cases are often preceded by epizootics among rodents. Early recognition of epizootics coupled with appropriate prevention measures should reduce plague morbidity and mortality. For nearly a century, the flea index (a measure of fleas per host) has been used as a measure of risk for epizootic spread and human plague case occurrence, yet the practicality and effectiveness of its use in surveillance programs has not been evaluated rigorously. We sought to determine whether long-term monitoring of the Xenopsylla flea index on hut-dwelling rats in sentinel villages in the plague-endemic West Nile region of Uganda accurately predicted plague occurrence in the surrounding parish. Based on observations spanning ~6 yr, we showed that on average, the Xenopsylla flea index increased prior to the start of the annual plague season and tended to be higher in years when plague activity was reported in humans or rodents compared with years when it was not. However, this labor-intensive effort had limited spatial coverage and was a poor predictor of plague activity within sentinel parishes.


Subject(s)
Epidemics , Plague/epidemiology , Plague/veterinary , Rats , Sentinel Species , Sentinel Surveillance/veterinary , Xenopsylla/physiology , Animals , Population Density , Seasons , Uganda/epidemiology
2.
J Med Entomol ; 55(5): 1292-1298, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-29860325

ABSTRACT

Few studies have been able to provide experimental evidence of the ability of fleas to maintain rodent-associated Bartonella infections and excrete these bacteria. These data are important for understanding the transmission cycles and prevalence of these bacteria in hosts and vectors. We used an artificial feeding approach to expose groups of the oriental rat flea (Xenopsylla cheopis Rothschild; Siphonaptera, Pulicidae) to rat blood inoculated with varying concentrations of Bartonella elizabethae Daly (Bartonellaceae: Rhizobiales). Flea populations were maintained by membrane feeding on pathogen-free bloodmeals for up to 13 d post infection. Individual fleas and pools of flea feces were tested for the presence of Bartonella DNA using molecular methods (quantitative and conventional polymerase chain reaction [PCR]). The threshold number of Bartonellae required in the infectious bloodmeal for fleas to be detected as positive was 106 colony-forming units per milliliter (CFU/ml). Individual fleas were capable of harboring infections for at least 13 d post infection and continuously excreted Bartonella DNA in their feces over the same period. This experiment demonstrated that X. cheopis are capable of acquiring and excreting B. elizabethae over several days. These results will guide future work to model and understand the role of X. cheopis in the natural transmission cycle of rodent-borne Bartonella species. Future experiments using this artificial feeding approach will be useful for examining the horizontal transmission of B. elizabethae or other rodent-associated Bartonella species to naïve hosts and for determining the viability of excreted bacteria.


Subject(s)
Bartonella/physiology , DNA, Bacterial/analysis , Insect Vectors/microbiology , Xenopsylla/microbiology , Animals , Feces/chemistry
3.
Emerg Infect Dis ; 18(7): 1151-4, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22709463

ABSTRACT

Socioeconomic indicators associated with temporal changes in the distribution of human plague cases in New Mexico were investigated for 1976-2007. In the 1980s, cases were more likely in census block groups with poor housing conditions, but by the 2000s, cases were associated with affluent areas concentrated in the Santa Fe-Albuquerque region.


Subject(s)
Plague/epidemiology , Socioeconomic Factors , Censuses , Housing , Humans , New Mexico , Plague/microbiology , Poverty , Seasons , United States , Yersinia pestis
4.
Am J Trop Med Hyg ; 77(1): 121-5, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17620642

ABSTRACT

Yersinia pestis, the causative agent of plague, has been detected in fleas and mammals throughout the western United States. This highly virulent infection is rare in humans, surveillance of the disease is expensive, and it often was assumed that risk of exposure to Y. pestis is high in most of the western United States. For these reasons, some local health departments in these plague-affected regions have hesitated to undertake surveillance and other prevention activities. To aid in targeting limited public health resources, we created a fine-resolution human plague risk map for New Mexico, the state reporting more than half the human cases in the United States. Our GIS-based model included three landscape features-a nonlinear relationship with elevation, distance to water, and distance to the ecotone between Rocky Mountain/Great Basin open and closed coniferous woodlands-and yielded an overall accuracy of approximately 80%. The model classified 17.25% of the state as posing significant risk of exposure to humans on privately or tribally owned land, which suggests that resource requirements for regular surveillance and control of plague could be effectively focused on < 20% of the state.


Subject(s)
Plague/epidemiology , Siphonaptera/microbiology , Yersinia pestis/isolation & purification , Animals , Disease Reservoirs , Ecosystem , Humans , New Mexico/epidemiology , Plague/etiology , Plague/pathology , Plague/prevention & control , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL