Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 382(6675): 1191-1195, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38060655

ABSTRACT

Watershed sediment can increase elevation of tidal wetlands struggling against rising seas, but where and how much watershed sediment helps is unknown. By combining contiguous US datasets on sediment loads and tidal wetland areas for 4972 rivers and their estuaries, we calculated that river sediment accretion will be insufficient to match sea level rise in 72% of cases because most watersheds are too small (median 21 square kilometers) to generate adequate sediment. Nearly half the tidal wetlands would require 10 times more river sediment to match sea level, a magnitude not generally achievable by dam removal in some regions. The realization that watershed sediment has little effect on most tidal wetland elevations shifts research priorities toward biological processes and coastal sediment dynamics that most influence elevation change.

2.
Environ Monit Assess ; 159(1-4): 475-91, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19067207

ABSTRACT

Water quality data at 12 sites within an urban, a suburban, and a rural stream were collected contemporaneously during four wet and eight dry periods. The urban stream yielded the highest biochemical oxygen demand (BOD), orthophosphate, total suspended sediment (TSS), and surfactant concentrations, while the most rural stream yielded the highest total organic carbon concentrations. Percent watershed development and percent impervious surface coverage were strongly correlated with BOD (biochemical oxygen demand), orthophosphate, and surfactant concentrations but negatively with total organic carbon. Excessive fecal coliform abundance most frequently occurred in the most urbanized catchments. Fecal coliform bacteria, TSS, turbidity, orthophosphate, total phosphorus, and BOD were significantly higher during rain events compared to nonrain periods. Total rainfall preceding sampling was positively correlated with turbidity, TSS, BOD, total phosphorus, and fecal coliform bacteria concentrations. Turbidity and TSS were positively correlated with phosphorus, fecal coliform bacteria, BOD, and chlorophyll a, which argues for better sedimentation controls under all landscape types.


Subject(s)
Environmental Monitoring , Rivers , Water Movements , Cities , Rain , Rural Population , Water Microbiology , Water Pollutants/analysis
3.
J Environ Qual ; 35(4): 1237-47, 2006.
Article in English | MEDLINE | ID: mdl-16825443

ABSTRACT

Streams alter the concentration of nutrients they transport and thereby influence nutrient loading to estuaries downstream; however, the relationship between in-stream uptake, discharge variability, and subsequent nutrient export is poorly understood. In this study, in-stream N and P uptake were examined in the stream network draining a row-crop agricultural operation in coastal North Carolina. The effect of in-stream nutrient uptake on estuarine loading was examined using continuous measurements of watershed nutrient export. From August to December 2003, 52 and 83% of the NH4+ and PO4(3-) loads were exported during storms while concurrent storm flow volume was 34% of the total. Whole-ecosystem mass transfer velocities (Vf) of NH4+ and PO4(3-), measured using short-term additions of inorganic nutrients, ranged from 0.1 to 25 mm min(-1). Using a mass balance approach, this in-stream uptake was found to attenuate 65 to 98% of the NH4+ flux and 78 to 98% of the PO4(3-) flux in small, first-order drainage ditches. For the larger channel downstream, an empirical model based on Vf and discharge was developed to estimate the percentage of the nutrient load retained in-stream. The model predicted that all of the upstream NH4+ and PO4(3-) load was retained during base flow, while 65 and 37% of the NH4+ and PO4(3-) load was retained during storms. Remineralization from the streambed (vs. terrestrial sources) was the apparent source of NH4+ and PO4(3-) to the estuary during base flow. In-stream uptake reduced the dissolved inorganic N to dissolved inorganic P ratio of water exported to the N-limited estuary, thus limiting the potential for estuarine phytoplankton growth.


Subject(s)
Agriculture , Nitrogen/analysis , Phosphorus/analysis , Seawater/analysis , Water/chemistry , Minerals/chemistry , Minerals/metabolism , North Carolina , Phosphates/analysis , Plankton/drug effects , Plankton/growth & development , Quaternary Ammonium Compounds/analysis , Time Factors , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
J Environ Qual ; 31(2): 654-60, 2002.
Article in English | MEDLINE | ID: mdl-11931459

ABSTRACT

Monthly inflow and outflow data were collected from three wet detention ponds in Wilmington, North Carolina, for a 29-mo period. Two ponds drained urban areas consisting primarily of residential, mixed services, and retail usage, while the third mainly drained residential and golf course areas. One of the urban ponds achieved significant reductions in total nitrogen, nitrate, ammonium, total phosphorus, orthophosphate, and fecal coliform bacterial counts. This pond was characterized by a high length to width ratio, with most inputs directed into the upper area, and extensive coverage by a diverse community of aquatic macrophyte vegetation. The second urban pond achieved significant reductions in turbidity and fecal coliform bacterial counts, but there were no significant differences between inflowing and outflowing water nutrient concentrations. There were substantial suburban runoff inputs entering the mid- and lower-pond areas that short-circuited pollutant removal contact time. The golf course pond showed significant increases in nitrate, ammonium, total phosphorus, and orthophosphate in the outflow relative to the inflow, probably as a result of course fertilization. However, nutrient concentrations in the outflow water were low compared with discharges from a selection of other area golf courses, possibly a result of the outflow passing through a wooded wetland following pond discharge. To achieve good reduction in a variety of pollutants, wet pond design should include maximizing the contact time of inflowing water with rooted vegetation and organic sediments. This can be achieved through a physical pond design that provides a high length to width ratio, and planting of native macrophyte species.


Subject(s)
Water Pollution/prevention & control , Water Purification/methods , Cities , Ecosystem , Enterobacteriaceae , Geologic Sediments/chemistry , Plants , Recreation , Water Microbiology , Water Movements , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...