Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Viruses ; 14(8)2022 08 16.
Article in English | MEDLINE | ID: mdl-36016414

ABSTRACT

Background. Recurrent therapeutic failures reported for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) with vancomycin may be due to poor bactericidal activity. Alternative antibacterial approaches using bacteriophages may overcome this limitation. Objectives. An experimental rat model of MRSA IE (EE) was used to examine the efficacy of vancomycin combined with a 1:1 bacteriophage (phage) cocktail composed of Herelleviridae vB_SauH_2002 and Routreeviridae 66. Methods. Six hours after inoculation with ca. 5 log10 colony forming units (CFU) of MRSA strain AW7, animals were treated with either: (i) saline, (ii) an equimolar two-phage cocktail (bolus of 1 mL followed by a 0.3 mL/h continuous infusion of 10 log10 plaque forming units (PFU)/mL phage suspension), (iii) vancomycin (at a dose mimicking the kinetics in humans of 0.5 g b.i.d.), or (iv) a combination of both. Bacterial loads in vegetations, and phage loads in vegetations, liver, kidney, spleen, and blood, were measured outcomes. Results. Phage cocktail alone was unable to control the growth of strain AW7 in cardiac vegetations. However, when combined with subtherapeutic doses of vancomycin, a statistically significant decrease of ∆4.05 ± 0.94 log10 CFU/g at 24 h compared to placebo was detected (p < 0.001). The administration of vancomycin was found to significantly impact on the local concentrations of phages in the vegetations and in the organs examined. Conclusions. Lytic bacteriophages as an adjunct treatment to the standard of care antibiotics could potentially improve the management of MRSA IE. Further studies are needed to investigate the impact of antibiotics on phage replication in vivo.


Subject(s)
Bacteriophages , Endocarditis, Bacterial , Endocarditis , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Endocarditis/drug therapy , Endocarditis, Bacterial/drug therapy , Endocarditis, Bacterial/microbiology , Microbial Sensitivity Tests , Rats , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Vancomycin/pharmacology , Vancomycin/therapeutic use
2.
J Am Heart Assoc ; 11(3): e023080, 2022 02.
Article in English | MEDLINE | ID: mdl-35043655

ABSTRACT

Background The potential of phage therapy for the treatment of endovascular Staphylococcus aureus infections remains to be evaluated. Methods and Results The efficacy of a phage cocktail combining Herelleviridae phage vB_SauH_2002 and Podoviriae phage 66 was evaluated against a methicillin-sensitive S. aureus strain in vitro and in vivo in a rodent model of experimental endocarditis. Six hours after bacterial challenge, animals were treated with (1) the phage cocktail. (2) subtherapeutic flucloxacillin dosage, (3) combination of the phage cocktail and flucloxacillin, or (4) saline. Bacterial loads in cardiac vegetations at 30 hours were the primary outcome. Secondary outcomes were phage loads at 30 hours in cardiac vegetations, blood, spleen, liver, and kidneys. We evaluated phage resistance 30 hours post infection in vegetations of rats under combination treatment. In vitro, phages synergized against S. aureus planktonic cells and the cocktail synergized with flucloxacillin to eradicated biofilms. In infected animals, the phage cocktail achieved bacteriostatic effect. The addition of low-dose flucloxacillin elevated bacterial suppression (∆ of -5.25 log10 colony forming unit/g [CFU/g] versus treatment onset, P<0.0001) and synergism was confirmed (∆ of -2.15 log10 CFU/g versus low-dose flucloxacillin alone, P<0.01). Importantly, 9/12 rats given the combination treatment had sterile vegetations at 30 hours. In vivo phage replication was partially suppressed by the antibiotic and selection of resistance to the Podoviridae component of the phage cocktail occurred. Plasma-mediated inhibition of phage killing activity was observed in vitro. Conclusions Combining phages with a low-dose standard of care antibiotic represents a promising strategy for the treatment of S. aureus infective endocarditis.


Subject(s)
Bacteriophages , Endocarditis, Bacterial , Endocarditis , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteriophages/physiology , Endocarditis/microbiology , Endocarditis, Bacterial/therapy , Floxacillin/pharmacology , Floxacillin/therapeutic use , Rats , Staphylococcal Infections/therapy , Staphylococcus aureus/physiology
3.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31582437

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) strain AW7 is a commonly used challenge strain in experimental models of MRSA infection. Here, we report its draft genome sequence.

4.
Front Microbiol ; 10: 742, 2019.
Article in English | MEDLINE | ID: mdl-31105650

ABSTRACT

Until 2007, Staphylococcus aureus from clonal complex 398 (CC398) was exclusively associated with livestock species and companion animals. Recently, several studies described the emergence of S. aureus CC398 as etiologies of severe infections in humans living in an animal-free environment. Recent sequencing efforts showed that the mobile genetic elements found in CC398 isolates were specific for each population and enabled differentiation of strains responsible for asymptomatic colonization from strains involved in bloodstream infections. We mobilized prophages from a human CC398 isolate and introduced them into two naïve ancestral isolates devoid of prophages that exclusively colonize animals. These lysogenized ancestral CC398 isolates acquired features related to virulence, such as an increased capacity to adhere to human extracellular matrix proteins and the ability to invade and survive within non-phagocytic cells. Pathogenicity of several clinical isolates from the CC398 lineage as well as ancestral and in vitro lysogenized ancestral counterparts was assessed in a model of infectious endocarditis in rats. Natural and artificial lysogens were not only more invasive than their prophage-free parent but also showed an increased capacity to multiply within aortic vegetations. This study identified prophages as mediators of bacterial virulence in a model of infectious endocarditis, probably through promotion of interaction with extracellular matrix components. Further studies are needed to identify mechanisms leading to promotion of intrinsic virulence.

5.
Virulence ; 9(1): 1615-1624, 2018.
Article in English | MEDLINE | ID: mdl-30280967

ABSTRACT

Staphylococcus aureus is the leading cause of infective endocarditis (IE). While the role of S. aureus cell-wall associated protein clumping factor A (ClfA) in promoting IE has been already demonstrated, that of the secreted plasma-clotting factors staphylocoagulase (Coa) and von Willebrand factor-binding protein (vWbp) has not yet been elucidated. We investigated the role of Coa and vWbp in IE initiation in rats with catheter-induced aortic vegetations, using Lactococcus lactis expressing coa, vWbp, clfA or vWbp/clfA, and S. aureus Newman Δcoa, ΔvWbp, ΔclfA or Δcoa/ΔvWbp/ΔclfA mutants. vWbp-expression increased L. lactis valve infection compared to parent and coa-expressing strains (incidence: 62%, versus 0% and 13%, respectively; P < 0.01). Likewise, expression of clfA increased L. lactis infectivity (incidence: 80%), which was not further affected by co-expression of vWbp. In symmetry, deletion of the coa or vWbp genes in S. aureus did not decrease infectivity (incidence: 68 and 64%, respectively) whereas deletion of clfA did decrease valve infection (incidence: 45%; P = 0.03 versus parent), which was not further affected by the triple deletion Δcoa/ΔvWbp/ΔclfA (incidence: 36%; P > 0.05 versus ΔclfA mutant). Coa does not support the initial colonization of IE (in L. lactis) without other key virulence factors and vWbp contributes to initiation of IE (in L. lactis) but is marginal in the present of ClfA.


Subject(s)
Aortic Valve/microbiology , Bacterial Proteins/metabolism , Coagulase/metabolism , Endocarditis, Bacterial/pathology , Staphylococcus aureus/genetics , von Willebrand Factor/metabolism , Animals , Aortic Valve/physiopathology , Bacterial Proteins/genetics , Catheter-Related Infections/microbiology , Coagulase/genetics , Female , Gene Deletion , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Rats , Rats, Wistar , Staphylococcal Infections , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics
6.
Water Res ; 143: 334-345, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29986243

ABSTRACT

The emergence of antibiotic resistance represents a major threat to human health. In this work we investigated the elimination of antibiotic resistant bacteria (ARB) by solar light and solar photo-Fenton processes. As such, we have designed an experimental plan in which several bacterial strains (Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae) possessing different drug-susceptible and -resistant patterns and structures (Gram-positive and Gram-negative) were subjected to solar light and the photo-Fenton oxidative treatment in water. We showed that both solar light and solar photo-Fenton processes were effective in the elimination of ARB in water and that the time necessary for solar light disinfection and solar photo-Fenton disinfection were similar for antibiotic-susceptible and antibiotic-resistant strains (mostly 180-240 and 90-120 min, respectively). Moreover, the bacterial structure did not significantly affect the effectiveness of the treatment. Similar regrowth pattern was observed (compared to the susceptible strain) and no development of bacteria with higher drug-resistance values was found in waters after any treatment. Finally, both processes were effective to reduce AR genes (ARGs), although solar photo-Fenton was more rapid than solar light. In conclusion, the solar photo-Fenton process ensured effective disinfection of ARB and elimination of ARGs in water (or wastewater) and is a potential mean to ensure limitation of ARB and ARG spread in nature.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Disinfection/methods , Drug Resistance, Bacterial/genetics , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Oxidation-Reduction , Photochemistry/methods , Sunlight , Wastewater/microbiology , Water Microbiology , Water Purification/methods
7.
Thromb Haemost ; 118(7): 1230-1241, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29909601

ABSTRACT

Adhesion of Staphylococcus aureus to endothelial cells (ECs) is paramount in infective endocarditis. Bacterial proteins such as clumping factor A (ClfA) and fibronectin binding protein A (FnbpA) mediate adhesion to EC surface molecules and (sub)endothelial matrix proteins including fibrinogen (Fg), fibrin, fibronectin (Fn) and von Willebrand factor (vWF). We studied the influence of shear flow and plasma on the binding of ClfA and FnbpA (including its sub-domains A, A16+, ABC, CD) to coverslip-coated vWF, Fg/fibrin, Fn or confluent ECs, making use of Lactococcus lactis, expressing these adhesins heterologously. Global adherence profiles were similar in static and flow conditions. In the absence of plasma, L. lactis-clfA binding to Fg increased with shear forces, whereas binding to fibrin did not. The degree of adhesion of L. lactis-fnbpA to EC-bound Fn and of L. lactis-clfA to EC-bound Fg, furthermore, was similar to that of L. lactis-clfA to coated vWF domain A1, in the presence of vWF-binding protein (vWbp). Yet, in plasma, L. lactis-clfA adherence to activated EC-vWF/vWbp dropped over 10 minutes by 80% due to vWF-hydrolysis by a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 and that of L. lactis-fnbpA likewise by > 70% compared to the adhesion in absence of plasma. In contrast, plasma Fg supported high L. lactis-clfA binding to resting and activated ECs. Or, in plasma S. aureus adhesion to active endothelium occurs mainly via two complementary pathways: a rapid but short-lived vWF/vWbp pathway and a stable integrin-coupled Fg-pathway. Hence, the pharmacological inhibition of ClfA-Fg interactions may constitute a valuable additive treatment in infective endocarditis.


Subject(s)
ADAMTS13 Protein/blood , Bacterial Adhesion , Coagulase/metabolism , Endocarditis, Bacterial/microbiology , Human Umbilical Vein Endothelial Cells/microbiology , Plasma/enzymology , Staphylococcus aureus/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Cells, Cultured , Coagulase/genetics , Endocarditis, Bacterial/blood , Fibrin/metabolism , Fibrinogen , Fibronectins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Staphylococcus aureus/genetics , Stress, Mechanical , von Willebrand Factor/metabolism
8.
PLoS One ; 13(2): e0192507, 2018.
Article in English | MEDLINE | ID: mdl-29408864

ABSTRACT

The recent rise of multidrug-resistant Gram-negative bacteria represents a serious threat to public health and makes the search for novel effective alternatives to antibiotics a compelling need. Bacteriophage (Phage) lysins are enzymes that hydrolyze the cell wall of bacteria and represent a promising alternative to tackle this ever-increasing problem. Despite their use is believed to be restricted to Gram-positive bacteria, recent findings have shown that they can also be used against Gram-negative bacteria. By using a phage genome-based screening approach, we identified and characterized a novel lysin, PlyE146, encoded by an Escherichia coli prophage and with a predicted molecular mass of ca. 17 kDa. PlyE146 is composed of a C-terminal cationic peptide and a N-terminal N-acetylmuramidase domain. Histidine-tagged PlyE146 was overexpressed from a plasmid in Lactococcus lactis NZ9000 and purified by NI-NTA chromatography. PlyE146 exhibited in vitro optimal bactericidal activity against E. coli K12 (3.6 log10 CFU/mL decrease) after 2 h of incubation at 37°C at a concentration of 400 µg/mL in the absence of NaCl and at pH 6.0. Under these conditions, PlyE146 displayed antimicrobial activity towards several other E. coli, Pseudomonas aeruginosa (3 to 3.8-log10 CFU/mL decrease) and Acinetobacter baumannii (4.9 to >5-log10 CFU/mL decrease) strains. Therefore, PlyE146 represents a promising therapeutic agent against E. coli, P. aeruginosa and A. baumannii infections. However, further studies are required to improve the efficacy of PlyE146 under physiological conditions.


Subject(s)
Coliphages/metabolism , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/pharmacology , Blotting, Western , Glycoside Hydrolases/metabolism , Gram-Negative Bacteria/drug effects , Microscopy, Electron, Transmission
9.
J Photochem Photobiol B ; 174: 229-234, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28802173

ABSTRACT

Candida spp. are able to survive on hospital surfaces and causes healthcare-associated infections (HCAIs). Since surface cleaning and disinfecting interventions are not totally effective to eliminate Candida spp., new approaches should be devised. Copper (Cu) has widely recognized antifungal activity and the use of Cu-sputtered surfaces has recently been proposed to curb the spread of HCAIs. Moreover, the activity of Cu under the action of actinic light remains underexplored. We investigated the antifungal activity of Cu-sputtered polyester surfaces (Cu-PES) against azole-resistant Candida albicans and Candida glabrata under dark and low intensity visible light irradiation (4.65mW/cm2). The surface properties of Cu-PES photocatalysts were characterized by diffuse reflectance spectroscopy (DRS) and X-ray fluorescence (XRF). Under dark, Cu-PES showed a fungicidal activity (≥3log10CFU reduction of the initial inoculum) against both C. albicans DSY296 and C. glabrata DSY565 leading to a reduction of the starting inoculum of 3.1 and 3.0log10CFU, respectively, within 60min of exposure. Under low intensity visible light irradiation, Cu-PES exhibited an accelerated fungicidal activity against both strains with a reduction of 3.0 and 3.4log10CFU, respectively, within 30min of exposure. This effect was likely due to the semiconductor Cu2O/CuO charge separation. The decrease in cell viability of the two Candida strains under dark and light conditions correlated with the progressive loss of membrane integrity. These results indicate that Cu-PES represent a promising strategy for decreasing the colonization of surfaces by yeasts and that actinic light can improve its self-disinfecting activity.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Candida albicans/drug effects , Candida albicans/radiation effects , Copper/pharmacology , Darkness , Drug Resistance, Fungal/drug effects , Antifungal Agents/chemistry , Candida albicans/cytology , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/radiation effects , Copper/chemistry , Drug Resistance, Fungal/radiation effects , Polyesters/chemistry , Surface Properties
10.
J Infect Dis ; 215(5): 703-712, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28007922

ABSTRACT

Background: Increasing antibiotic resistance warrants therapeutic alternatives. Here we investigated the efficacy of bacteriophage-therapy (phage) alone or combined with antibiotics against experimental endocarditis (EE) due to Pseudomonas aeruginosa, an archetype of difficult-to-treat infection. Methods: In vitro fibrin clots and rats with aortic EE were treated with an antipseudomonas phage cocktail alone or combined with ciprofloxacin. Phage pharmacology, therapeutic efficacy, and resistance were determined. Results: In vitro, single-dose phage therapy killed 7 log colony-forming units (CFUs)/g of fibrin clots in 6 hours. Phage-resistant mutants regrew after 24 hours but were prevented by combination with ciprofloxacin (2.5 × minimum inhibitory concentration). In vivo, single-dose phage therapy killed 2.5 log CFUs/g of vegetations in 6 hours (P < .001 vs untreated controls) and was comparable with ciprofloxacin monotherapy. Moreover, phage/ciprofloxacin combinations were highly synergistic, killing >6 log CFUs/g of vegetations in 6 hours and successfully treating 64% (n = 7/11) of rats. Phage-resistant mutants emerged in vitro but not in vivo, most likely because resistant mutations affected bacterial surface determinants important for infectivity (eg, the pilT and galU genes involved in pilus motility and LPS formation). Conclusions: Single-dose phage therapy was active against P. aeruginosa EE and highly synergistic with ciprofloxacin. Phage-resistant mutants had impaired infectivity. Phage-therapy alone or combined with antibiotics merits further clinical consideration.


Subject(s)
Anti-Bacterial Agents/pharmacology , Endocarditis/therapy , Phage Therapy/methods , Pseudomonas Infections/therapy , Pseudomonas aeruginosa/drug effects , Animals , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial , Endocarditis/microbiology , Female , Microbial Sensitivity Tests , Pseudomonas aeruginosa/pathogenicity , Rats , Rats, Wistar , Virulence
11.
Infect Immun ; 84(12): 3557-3563, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27736784

ABSTRACT

Streptococcus gordonii and related species of oral viridans group streptococci (VGS) are common etiological agents of infective endocarditis (IE). We explored vaccination as a strategy to prevent VGS-IE, using a novel antigen-presenting system based on non-genetically modified Lactococcus lactis displaying vaccinogens on its surface. Hsa and PadA are surface-located S. gordonii proteins implicated in platelet adhesion and aggregation, which are key steps in the pathogenesis of IE. This function makes them ideal targets for vaccination against VGS-IE. In the present study, we report the use of nonliving L. lactis displaying at its surface the N-terminal region of Hsa or PadA by means of the cell wall binding domain of Lactobacillus casei A2 phage lysine LysA2 (Hsa-LysA2 and PadA-LysA2, respectively) and investigation of their ability to elicit antibodies in rats and to protect them from S. gordonii experimental IE. Immunized and control animals with catheter-induced sterile aortic valve vegetations were inoculated with 106 CFU of S. gordonii The presence of IE was evaluated 24 h later. Immunization of rats with L. lactis Hsa-LysA2, L. lactis PadA-LysA2, or both protected 6/11 (55%), 6/11 (55%), and 11/12 (91%) animals, respectively, from S. gordonii IE (P < 0.05 versus controls). Protection correlated with the induction of high levels of functional antibodies against both Hsa and PadA that delayed or totally inhibited platelet aggregation by S. gordonii These results support the value of L. lactis as a system for antigen delivery and of Hsa and PadA as promising candidates for a vaccine against VGS-IE.


Subject(s)
Adhesins, Bacterial/metabolism , Antibodies, Bacterial/immunology , Carrier Proteins/metabolism , Endocarditis, Bacterial/prevention & control , Platelet Aggregation/immunology , Streptococcal Infections/microbiology , Streptococcus gordonii/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/immunology , Animals , Bacterial Vaccines/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Female , Gene Expression Regulation, Bacterial , Hemagglutinins, Viral , Lactobacillus leichmannii/genetics , Lactobacillus leichmannii/metabolism , Rats
12.
PLoS One ; 11(8): e0160554, 2016.
Article in English | MEDLINE | ID: mdl-27505001

ABSTRACT

Streptococcus tigurinus is responsible for severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. As described, S. tigurinus isolates AZ_3aT and AZ_14 were highly virulent (HV phenotype) in an experimental model of infective endocarditis and showed enhanced adherence and invasion of human endothelial cells when compared to low virulent S. tigurinus isolate AZ_8 (LV phenotype). Here, we sought whether genetic determinants could explain the higher virulence of AZ_3aT and AZ_14 isolates. Several genetic determinants specific to the HV strains were identified through extensive comparative genomics amongst which some were thought to be highly relevant for the observed HV phenotype. These included i) an iron uptake and metabolism operon, ii) an ascorbate assimilation operon, iii) a newly acquired PI-2-like pilus islets described for the first time in S. tigurinus, iv) a hyaluronate metabolism operon, v) an Entner-Doudoroff pathway of carbohydrates metabolism, and vi) an alternate pathways for indole biosynthesis. We believe that the identified genomic features could largely explain the phenotype of high infectivity of the two HV S. tigurinus strains. Indeed, these features include determinants that could be involved at different stages of the disease such as survival of S. tigurinus in blood (iron uptake and ascorbate metabolism operons), initial attachment of bacterial pathogen to the damaged cardiac tissue and/or vegetation that formed on site (PI-2-like pilus islets), tissue invasion (hyaluronate operon and Entner-Doudoroff pathway) and regulation of pathogenicity (indole biosynthesis pathway).


Subject(s)
Genomics , Streptococcus/genetics , Streptococcus/pathogenicity , Ascorbic Acid/metabolism , Bacterial Adhesion/genetics , Biological Transport/genetics , Hyaluronic Acid/metabolism , Indoles/metabolism , Iron/metabolism , Molecular Sequence Annotation , Phenotype , Proteomics , Species Specificity , Streptococcus/metabolism , Tryptophan/metabolism , Virulence/genetics
13.
Antimicrob Agents Chemother ; 60(9): 5349-56, 2016 09.
Article in English | MEDLINE | ID: mdl-27353266

ABSTRACT

In this study, silver/copper (Ag/Cu)-coated catheters were investigated for their efficacy in preventing methicillin-resistant Staphylococcus aureus (MRSA) infection in vitro and in vivo Ag and Cu were sputtered (67/33% atomic ratio) on polyurethane catheters by direct-current magnetron sputtering. In vitro, Ag/Cu-coated and uncoated catheters were immersed in phosphate-buffered saline (PBS) or rat plasma and exposed to MRSA ATCC 43300 at 10(4) to 10(8) CFU/ml. In vivo, Ag/Cu-coated and uncoated catheters were placed in the jugular vein of rats. Directly after, MRSA (10(7) CFU/ml) was inoculated in the tail vein. Catheters were removed 48 h later and cultured. In vitro, Ag/Cu-coated catheters preincubated in PBS and exposed to 10(4) to 10(7) CFU/ml prevented the adherence of MRSA (0 to 12% colonization) compared to uncoated catheters (50 to 100% colonization; P < 0.005) and Ag/Cu-coated catheters retained their activity (0 to 20% colonization) when preincubated in rat plasma, whereas colonization of uncoated catheters increased (83 to 100%; P < 0.005). Ag/Cu-coating protection diminished with 10(8) CFU/ml in both PBS and plasma (50 to 100% colonization). In vivo, Ag/Cu-coated catheters reduced the incidence of catheter infection compared to uncoated catheters (57% versus 79%, respectively; P = 0.16) and bacteremia (31% versus 68%, respectively; P < 0.05). Scanning electron microscopy of explanted catheters suggests that the suboptimal activity of Ag/Cu catheters in vivo was due to the formation of a dense fibrin sheath over their surface. Ag/Cu-coated catheters thus may be able to prevent MRSA infections. Their activity might be improved by limiting plasma protein adsorption on their surfaces.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteremia/prevention & control , Catheters, Indwelling/microbiology , Coated Materials, Biocompatible/pharmacology , Copper/pharmacology , Silver/pharmacology , Staphylococcal Infections/prevention & control , Adsorption , Animals , Bacteremia/microbiology , Colony Count, Microbial , Fibrin/chemistry , Jugular Veins , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polyurethanes/chemistry , Rats , Staphylococcal Infections/microbiology
14.
ACS Med Chem Lett ; 7(6): 606-11, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27326335

ABSTRACT

Sortases are transpeptidase enzymes that anchor surface proteins, including virulence factors, to the cell wall of Gram-positive bacteria, and they are potential targets for the development of anti-infective agents. While several large compound libraries were searched by high-throughput screening, no high-affinity inhibitors of sortases could be developed to date. Here, we applied phage display to screen billions of peptide macrocycles against sortase A (SrtA) of Staphylococcus aureus (S. aureus). We were able to identify potent and selective inhibitors of SrtA that blocked SrtA-mediated anchoring of synthetic substrates to the surface of live S. aureus cells. A region present in all inhibitory peptides (Leu-Pro-Pro) resembled the natural substrates of SrtA (Leu-Pro-Xaa-Thr-Gly), suggesting that the macrocycles bind to the enzyme's active site and that they form similar molecular contacts as natural substrates. The evolved peptide macrocycles may be used as lead structures for the development of potent peptidomimetic SrtA inhibitors.

15.
Appl Microbiol Biotechnol ; 100(13): 5945-53, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27020284

ABSTRACT

Using direct current magnetron sputtering (DCMS), we generated flexible copper polyester surfaces (Cu-PES) and investigated their antimicrobial activity against a range of multidrug-resistant (MDR) pathogens including eight Gram-positive isolates (three methicillin-resistant Staphylococcus aureus [MRSA], four vancomycin-resistant enterococci, one methicillin-resistant Staphylococcus epidermidis) and four Gram-negative strains (one extended-spectrum ß-lactamase-producing [ESBL] Escherichia coli, one ESBL Klebsiella pneumoniae, one imipenem-resistant Pseudomonas aeruginosa, and one ciprofloxacin-resistant Acinetobacter baumannii). Bactericidal activity (≥3 log10 CFU reduction of the starting inoculum) was reached within 15-30 min exposure to Cu-PES. Antimicrobial activity of Cu-PES persisted in the absence of oxygen and against both Gram-positive and Gram-negative bacteria containing elevated levels of catalases, indicating that reactive oxygen species (ROS) do not play a primary role in the killing process. The decrease in cell viability of MRSA ATCC 43300 and Enterococcus faecalis V583 correlated with the progressive loss of cytoplasmic membrane integrity both under aerobic and anaerobic conditions, suggesting that Cu-PES mediated killing is primarily induced by disruption of the cytoplasmic membrane function. Overall, we here present novel antimicrobial copper surfaces with improved stability and sustainability and provide further insights into their mechanism of killing.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/microbiology , Copper/pharmacology , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Anti-Bacterial Agents/chemistry , Copper/chemistry , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Nanoparticles/chemistry
16.
Pathog Dis ; 73(8): ftv060, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26310867

ABSTRACT

Enterococcus faecalis and Streptococcus gallolyticus cause infective endocarditis (IE), which can originate from the continuous release or translocation of low bacterial numbers into the bloodstream. In this context, IE cannot be prevented with antibiotics. We previously demonstrated that aspirin plus ticlopidine protected rats from IE due to S. gordonii and Staphylococcus aureus. Here we showed that aspirin plus ticlopidine significantly reduced vegetation weight and protected 73 and 64% rats (P < 0.005) from IE due to E. faecalis and S. gallolyticus, respectively. These results further support the potential use of aspirin plus ticlopidine for a global prevention of IE in high-risk patients.


Subject(s)
Aspirin/administration & dosage , Endocarditis, Bacterial/prevention & control , Enterococcus faecalis/growth & development , Gram-Positive Bacterial Infections/prevention & control , Platelet Aggregation Inhibitors/pharmacology , Streptococcus/growth & development , Ticlopidine/administration & dosage , Animals , Disease Models, Animal , Endocarditis, Bacterial/microbiology , Female , Gram-Positive Bacterial Infections/microbiology , Rats, Wistar , Treatment Outcome
17.
Vaccine ; 33(30): 3512-7, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26048778

ABSTRACT

Staphylococcus aureus is a major cause of serious infections in humans and animals and a vaccine is becoming a necessity. Lactococcus lactis is a non-pathogenic bacterium that can be used as a vector for the delivery of antigens. We investigated the ability of non-living L. lactis heterologously expressing S. aureus clumping factor A (ClfA) and fibronectin-binding protein A (FnbpA), alone or together, to elicit an immune response in rats and protect them from S. aureus experimental infective endocarditis (IE). L. lactis ClfA was used for immunization against S. aureus Newman (expressing ClfA but not FnbpA), while L. lactis ClfA, L. lactis FnbpA, as well as L. lactis ClfA/FnbpA, were used against S. aureus P8 (expressing ClfA and FnbpA). Vaccination of rats with L. lactis ClfA elicited antibodies that inhibited binding of S. aureus Newman to fibrinogen, triggered the production of IL-17A and conferred protection to 13/19 (68%) of the animals from IE (P<0.05). Immunization with L. lactis ClfA, L. lactis FnbpA or L. lactis ClfA/FnbpA also produced antibodies against the target proteins, but these did not prevent binding of S. aureus P8 to fibrinogen or fibronectin and did not protect animals against S. aureus P8 IE. Moreover, immunization with constructs containing FnbpA did not increase IL-17A production. These results indicate that L. lactis is a valuable antigen delivery system able to elicit efficient humoral and cellular responses. However, the most appropriate antigens affording protection against S. aureus IE are yet to be elucidated.


Subject(s)
Adhesins, Bacterial/immunology , Coagulase/immunology , Drug Carriers , Endocarditis/prevention & control , Lactococcus lactis/genetics , Staphylococcal Vaccines/immunology , Staphylococcus aureus/immunology , Adhesins, Bacterial/genetics , Animals , Antibodies, Bacterial/blood , Coagulase/genetics , Disease Models, Animal , Endocarditis/immunology , Female , Fibronectins/metabolism , Rats, Wistar , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Staphylococcal Vaccines/administration & dosage , Staphylococcal Vaccines/genetics , Staphylococcus aureus/genetics , Treatment Outcome , Vaccination/methods
19.
Antimicrob Agents Chemother ; 59(4): 2435-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25605361

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) carrying the mecC gene (mecC-MRSA) exhibited at 37°C MICs of oxacillin close to those of methicillin-susceptible S. aureus (MSSA). We investigated whether at this temperature, mecC-MRSA strains respond to flucloxacillin treatment like MSSA strains, using a rat model of endocarditis. Flucloxacillin (human-like kinetics of 2 g intravenously every 6 h) cured 80 to 100% of aortic vegetations infected with five different mecC-MRSA strains. These results suggest that mecC-MRSA infections may successfully respond to treatment with ß-lactams.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Endocarditis, Bacterial/drug therapy , Floxacillin/therapeutic use , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/drug therapy , Animals , Anti-Bacterial Agents/administration & dosage , Aorta/microbiology , Cefoxitin/pharmacology , Chromatography, Micellar Electrokinetic Capillary , Endocarditis, Bacterial/microbiology , Floxacillin/administration & dosage , Infusion Pumps , Microbial Sensitivity Tests , Oxacillin/pharmacology , Rats , Staphylococcal Infections/microbiology , Temperature
20.
J Infect Dis ; 211(1): 72-9, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25086177

ABSTRACT

BACKGROUND: Infective endocarditis (IE) mostly occurs after spontaneous low-grade bacteremia. Thus, IE cannot be prevented by circumstantial antibiotic prophylaxis. Platelet activation following bacterial-fibrinogen interaction or thrombin-mediated fibrinogen-fibrin polymerization is a critical step in vegetation formation. We tested the efficacy of antiplatelet and antithrombin to prevent experimental IE. METHODS: A rat model of experimental IE following prolonged low-grade bacteremia mimicking smoldering bacteremia in humans was used. Prophylaxis with antiplatelets (aspirin, ticlopidine [alone or in combination], eptifibatide, or abciximab) or anticoagulants (antithrombin dabigatran etexilate or anti-vitamin K acenocoumarol) was started 2 days before inoculation with Streptococcus gordonii or Staphylococcus aureus. Valve infection was assessed 24 hours later. RESULTS: Aspirin plus ticlopidine, as well as abciximab, protected 45%-88% of animals against S. gordonii and S. aureus IE (P < .05). Dabigatran etexilate protected 75% of rats against IE due to S. aureus (P < .005) but failed to protect against S. gordonii (<30% protection). Acenocoumarol was ineffective. CONCLUSIONS: Antiplatelet and direct antithrombin agents may be useful in the prophylaxis of IE in humans. In particular, the potential dual benefit of dabigatran etexilate might be reconsidered for patients with prosthetic valves, who require life-long anticoagulation and in whom S. aureus IE is associated with high mortality.


Subject(s)
Endocarditis, Bacterial/drug therapy , Fibrinolytic Agents/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Animals , Antibiotic Prophylaxis/methods , Bacteremia/drug therapy , Bacteremia/microbiology , Disease Models, Animal , Endocarditis, Bacterial/microbiology , Humans , Rats , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Streptococcus gordonii/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...