Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 456, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212332

ABSTRACT

Despite the plant health-promoting effects of plant microbiota, these assemblages also comprise potentially detrimental microbes. How plant immunity controls its microbiota to promote plant health under these conditions remains largely unknown. We find that commensal bacteria isolated from healthy Arabidopsis plants trigger diverse patterns of reactive oxygen species (ROS) production dependent on the immune receptors and completely on the NADPH oxidase RBOHD that selectively inhibited specific commensals, notably Xanthomonas L148. Through random mutagenesis, we find that L148 gspE, encoding a type II secretion system (T2SS) component, is required for the damaging effects of Xanthomonas L148 on rbohD mutant plants. In planta bacterial transcriptomics reveals that RBOHD suppresses most T2SS gene expression including gspE. L148 colonization protected plants against a bacterial pathogen, when gspE was inhibited by ROS or mutation. Thus, a negative feedback loop between Arabidopsis ROS and the bacterial T2SS tames a potentially detrimental leaf commensal and turns it into a microbe beneficial to the host.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Feedback , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Bacteria/metabolism , Gene Expression Regulation, Plant , Plant Immunity/genetics
2.
EMBO Rep ; 23(12): e55380, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36219690

ABSTRACT

Interactions between plants and neighboring microbial species are fundamental elements that collectively determine the structure and function of the plant microbiota. However, the molecular basis of such interactions is poorly characterized. Here, we colonize Arabidopsis leaves with nine plant-associated bacteria from all major phyla of the plant microbiota and profile cotranscriptomes of plants and bacteria six hours after inoculation. We detect both common and distinct cotranscriptome signatures among plant-commensal pairs. In planta responses of commensals are similar to those of a disarmed pathogen characterized by the suppression of genes involved in general metabolism in contrast to a virulent pathogen. We identify genes that are enriched in the genome of plant-associated bacteria and induced in planta, which may be instrumental for bacterial adaptation to the host environment and niche separation. This study provides insights into how plants discriminate among bacterial strains and lays the foundation for in-depth mechanistic dissection of plant-microbiota interactions.

3.
Plant Cell ; 33(6): 1863-1887, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33751107

ABSTRACT

Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassicaceae , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Gene Expression , Gene Expression Regulation, Plant/genetics , Plant Immunity/genetics
4.
Sci Rep ; 10(1): 10214, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576897

ABSTRACT

Rice seeds germinating in flooded soils encounter hypoxia or even anoxia leading to poor seed germination and crop establishment. Introgression of AG1 and AG2 QTLs associated with tolerance of flooding during germination, together with seed pre-treatment via hydro-priming or presoaking can enhance germination and seedling growth in anaerobic soils. This study assessed the performance of elite lines incorporating AG1, AG2 and their combination when directly seeded in flooded soils using dry seeds. The QTLs were in the background of two popular varieties PSB Rc82 and Ciherang-Sub1, evaluated along with the donors Kho Hlan On (AG1) and Ma-Zhan Red (AG2) and recipient parents PSB Rc82 and Ciherang-Sub1. In one set of experiments conducted in the greenhouse, seedling emergence, growth, and carbohydrate mobilization from seeds were assessed. Metabolites associated with reactive oxygen species (ROS) scavenging including malondialdehyde (MDA) as a measure of lipid peroxidation, ascorbate, total phenolic concentration (TPC), and activities of ROS scavenging enzymes were quantified in seeds germinating under control (saturated) and flooded (10 cm) soils. In another set of experiments conducted in a natural field with 3-5 cm flooding depths, control and pretreated seeds of Ciherang-Sub1 introgression lines and checks were used. Flooding reduced seedling emergence of all genotypes, though emergence of AG1 + AG2 introgression lines was greater than the other AG lines. Soluble sugars increased, while starch concentration decreased gradually under flooding especially in the tolerant checks and in AG1 + AG2 introgression lines. Less lipid peroxidation and higher α-amylase activity, higher ascorbate (RAsA) and TPC were observed in the tolerant checks and in the AG1 + AG2 introgression lines. Lipid peroxidation correlated negatively with ascorbate, TPC, and with ROS scavengers. Seed hydro-priming or pre-soaking increased emergence by 7-10% over that of dry seeds. Introgression of AG2 and AG1 + AG2 QTLs with seed pretreatment showed 101-153% higher emergence over dry seeds of intolerant genotypes in the field. Lines carrying AG1 + AG2 QTLs showed higher α-amylase activity, leading to rapid starch degradation and increase in soluble sugars, ascorbate, and TPC, together leading to higher germination and seedling growth in flooded soils. Seed hydro-priming or pre-soaking for 24 h also improved traits associated with flooding tolerance. Combining tolerance with seed management could therefore, improve crop establishment in flooded soils and encourage large-scale adoption of direct seeded rice system.


Subject(s)
Adaptation, Physiological , Germination , Oryza/physiology , Plant Physiological Phenomena , Plant Proteins/genetics , Quantitative Trait Loci , Seeds/physiology , Anaerobiosis , Floods
5.
Front Plant Sci ; 9: 417, 2018.
Article in English | MEDLINE | ID: mdl-29740456

ABSTRACT

Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na+ sequestration in leaf might be occurring independent of tonoplast-localized OsNHX1. The newly isolated wild rice accessions will be valuable materials for both rice improvement to salinity stress and the study of salt tolerance mechanism in plants.

6.
Front Plant Sci ; 8: 1857, 2017.
Article in English | MEDLINE | ID: mdl-29123541

ABSTRACT

The water-, energy-, and labor-intensive system of transplanted puddled rice (Oryza sativa) is steadily being replaced by direct seeding due to the progressive scarcity of these resources. However, the alternate dry direct seeding leads to competition with weeds and poor establishment when soils are flooded. Direct seeded rice capable of anaerobic germination (germination in flooded soil, AG) is ideal, which under rainfed ecosystems would also overcome waterlogging during germination. AG tolerance is associated with faster germination and faster elongation of coleoptiles, with the activities of alcoholic fermentation enzymes replacing aerobic respiration as a source of energy. To better understand the variability in the morpho-physiological responses and in the nature of the alcoholic fermentation enzymes during AG, 21 rice genotypes were studied. The genotypes Khao Hlan On (KHO) and IR42 were used as the tolerant and susceptible checks, respectively. KHO exhibited faster germination, with 82.5% of the coleoptiles emerging out of 10 cm of water within 8 days, whereas IR42 exhibited 20% germination and limited coleoptile growth. Among the test genotypes, four performed well, including two that are drought tolerant. Increased content and activity of the alcoholic fermentation enzymes, alcohol dehydrogenase (ADH1) and acetaldehyde dehydrogenase (ALDH2a and ALDH2b), was noted in KHO under anaerobic than under aerobic conditions and also in comparison with IR42 under AG. Gene transcripts for these enzymes were also more in KHO undergoing AG. However, no major differences were observed between KHO and IR42 in the critical cis-acting regulatory elements, such as the auxin, light, and sugar response elements, in the promoters of ADH1, ALDH2a, and ALDH2b genes. Post-transcriptional and post-translational regulatory mechanisms were implicated for the increased transcript and protein content/activity of the enzymes in KHO by observing four different transcripts of ALDH2a and a unique non-glycosylated form of ADH1 under AG. IR42 lacked the non-glycosylated ADH1 and contained only a truncated form of ALDH2a, which lacked the active site. Additionally, KHO exhibited increased activity and more isoforms for reactive oxygen species detoxifying enzymes under AG compared to IR42. These results highlight the need for a deeper functional understanding of the critical enzymes involved in AG.

SELECTION OF CITATIONS
SEARCH DETAIL
...