Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38592900

ABSTRACT

We compared the effects of wood-, manure-, and blend-derived biochar (BC) saturated/unsaturated with dairy effluents on Vigna unguiculata and Cynodon dactylon performance and soil characteristics in a greenhouse pot study. Plant samples were assayed for herbage and root dry weight and N and C percentages. Soil samples were assayed for nutrients, pH, and conductivity. Variance analysis, Tukey's tests, Pearson's correlations, and multiple regression analysis were performed. The performance of C. dactylon was not affected. V. unguiculata's herbage and root production responded negatively to manure BC and 2% of any BC, respectively, which is mainly explained by the conductivity and soil P increase, respectively. When V. unguiculata was grown, BC inclusion decreased NO3-N and increased the soil P content. When C. dactylon was grown, only P was altered (increased) when manure or the blend BC were applied. The soil total C increased as the BC loading rate increased. The application of high BC rates was detrimental for V. unguiculata, but showed a neutral effect for C. dactylon. To improve dairy waste recycling, saturated 1% blend BC and saturated 2% blend or manure BC could be applied to V. unguiculata and C. dactylon, respectively, with no short-term negative impacts. Only wood BC avoided soil P build-up. BC application increased the soil total C, showing potential for C sequestration.

2.
Plants (Basel) ; 13(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256792

ABSTRACT

Studies have determined the separate effects of biochar (BC) and manure application on forage species and soil, but few examined the effects of BCs made from different feedstock applied along with dairy manure. We compared the effect of wood- and manure-derived feedstock BC as well as dairy manure amendment application on Cynodon dactylon performance and soil properties in sandy loam and clay loam soils in a greenhouse pot study. Plant samples were assayed for herbage and root dry weight as well as herbage and root N and C percent and yield. Soil samples were assayed for macronutrients, micronutrients, metals, pH and conductivity. Data analyses involved variance analysis and Tukey's tests using R in RStudio (the IDE). In general, C. dactylon yields or mineral content were not affected by either manure or BC. However, an increase in the total herbage dry weight (30%) and in herbage N% (55%) was observed for clay loam and sandy loam soil, respectively, due to manure amendment application. There were no alterations in clay loam NO3-N and P due to any treatment; however, in sandy loam, these nutrients were not altered only when wood BC was applied. In sandy loam soil, NO3-N and P increased when manure BC along with dairy manure and when manure BC alone were applied, respectively. Thus, wood BC application should be considered to avoid these nutrient buildups when dairy manure is used as a soil amendment. This research shows a neutral (BC) or positive (dairy manure amendment) impact on C. dactylon performance. BC incorporation increases soil total C, showing potential for C sequestration. Long-term field trials could corroborate plant performance and soil parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...