Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 2768, 2018.
Article in English | MEDLINE | ID: mdl-30581431

ABSTRACT

Adequate perception of immunologically important pathogen-associated molecular patterns like lipopolysaccharide and bacterial lipoproteins is essential for efficient innate and adaptive immune responses. In the context of Gram-negative infection, bactericidal/permeability-increasing protein (BPI) neutralizes endotoxic activity of lipopolysaccharides, and thus prohibits hyperactivation. So far, no immunological function of BPI has been described in Gram-positive infections. Here, we show a significant elevation of BPI in Gram-positive meningitis and, surprisingly, a positive correlation between BPI and pro-inflammatory markers like TNFα. To clarify the underlying mechanisms, we identify BPI ligands of Gram-positive origin, specifically bacterial lipopeptides and lipoteichoic acids, and determine essential structural motifs for this interaction. Importantly, the interaction of BPI with these newly defined ligands significantly enhances the immune response in peripheral blood mononuclear cells (PBMCs) mediated by Gram-positive bacteria, and thereby ensures their sensitive perception. In conclusion, we define BPI as an immune enhancing pattern recognition molecule in Gram-positive infections.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Bacterial Proteins/immunology , Blood Proteins/immunology , Gram-Positive Bacteria/immunology , Gram-Positive Bacterial Infections/immunology , Lipoproteins/immunology , Meningitis, Bacterial/immunology , Gram-Positive Bacterial Infections/pathology , HEK293 Cells , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/pathology , Lipopeptides/immunology , Lipopolysaccharides/immunology , Male , Meningitis, Bacterial/pathology , Teichoic Acids/immunology , Tumor Necrosis Factor-alpha/immunology
2.
Proc Natl Acad Sci U S A ; 115(37): E8652-E8659, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30154163

ABSTRACT

Structure and function studies of membrane proteins, particularly G protein-coupled receptors and multipass transmembrane proteins, require detergents. We have devised a simple tool, the QTY code (glutamine, threonine, and tyrosine), for designing hydrophobic domains to become water soluble without detergents. Here we report using the QTY code to systematically replace the hydrophobic amino acids leucine, valine, isoleucine, and phenylalanine in the seven transmembrane α-helices of CCR5, CXCR4, CCR10, and CXCR7. We show that QTY code-designed chemokine receptor variants retain their thermostabilities, α-helical structures, and ligand-binding activities in buffer and 50% human serum. CCR5QTY, CXCR4QTY, and CXCR7QTY also bind to HIV coat protein gp41-120. Despite substantial transmembrane domain changes, the detergent-free QTY variants maintain stable structures and retain their ligand-binding activities. We believe the QTY code will be useful for designing water-soluble variants of membrane proteins and other water-insoluble aggregated proteins.


Subject(s)
Glutamine/metabolism , Receptors, Chemokine/metabolism , Threonine/metabolism , Tyrosine/metabolism , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Detergents/chemistry , Glutamine/chemistry , Glutamine/genetics , Hot Temperature , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Protein Binding , Protein Stability , Protein Structure, Secondary , Receptors, Chemokine/chemistry , Receptors, Chemokine/genetics , Solubility , Threonine/chemistry , Threonine/genetics , Tyrosine/chemistry , Tyrosine/genetics , Water/chemistry
3.
J Vis Exp ; (119)2017 01 07.
Article in English | MEDLINE | ID: mdl-28117825

ABSTRACT

Characterization of molecular interactions in terms of basic binding parameters such as binding affinity, stoichiometry, and thermodynamics is an essential step in basic and applied science. MicroScale Thermophoresis (MST) is a sensitive biophysical method to obtain this important information. Relying on a physical effect called thermophoresis, which describes the movement of molecules through temperature gradients, this technology allows for the fast and precise determination of binding parameters in solution and allows the free choice of buffer conditions (from buffer to lysates/sera). MST uses the fact that an unbound molecule displays a different thermophoretic movement than a molecule that is in complex with a binding partner. The thermophoretic movement is altered in the moment of molecular interaction due to changes in size, charge, and hydration shell. By comparing the movement profiles of different molecular ratios of the two binding partners, quantitative information such as binding affinity (pM to mM) can be determined. Even challenging interactions between molecules of small sizes, such as aptamers and small compounds, can be studied by MST. Using the well-studied model interaction between the DH25.42 DNA aptamer and ATP, this manuscript provides a protocol to characterize aptamer-small molecule interactions. This study demonstrates that MST is highly sensitive and permits the mapping of the binding site of the 7.9 kDa DNA aptamer to the adenine of ATP.


Subject(s)
Adenosine Triphosphate/metabolism , Aptamers, Nucleotide/metabolism , Biophysics/methods , Adenosine Triphosphate/chemistry , Aptamers, Nucleotide/chemistry , Binding Sites , Biophysics/instrumentation , Temperature , Thermodynamics
4.
Methods ; 97: 27-34, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26334574

ABSTRACT

Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule.


Subject(s)
Adenosine Triphosphate/chemistry , Aptamers, Nucleotide/chemistry , Adenosine Triphosphate/isolation & purification , Binding Sites , Chemistry Techniques, Analytical , Ligands , SELEX Aptamer Technique , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...