Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(10): eabm5120, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35275730

ABSTRACT

Stimuli-interactive structural color (SC) of a block copolymer (BCP) photonic crystal (PC) uses reversible alteration of the PC using external fluids and applied forces. The origin of the diffusional pathways of a stimulating fluid into a BCP PC has not been examined. Here, we directly visualize the vertically oriented screw dislocations in a one-dimensional lamellar BCP PC that facilitate the rapid response of visible SC. To reveal the diffusional pathway of the solvent via the dislocations, BCP lamellae are swollen with an interpenetrated hydrogel network, allowing fixation of the swollen state and subsequent microscopic examination. The visualized defects are low-energy helicoidal screw dislocations having unique, nonsingular cores. Location and areal density of these dislocations are determined by periodic concentric topographic nanopatterns of the upper surface-reconstructed layer. The nonsingular nature of the interlayer connectivity in the core region demonstrates the beneficial nature of these defects on sensing dynamics.

2.
Sci Adv ; 6(30): eabb5769, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32832673

ABSTRACT

The development of a lightweight, low-power, user-interactive three-dimensional (3D) touchless display in which a human stimulus can be detected and simultaneously visualized in noncontact mode is of great interest. Here, we present a user-interactive 3D touchless sensing display based on multiorder reflection structural colors (SCs) of a thin, solid-state block copolymer (BCP) photonic crystal (PC). Full-visible-range SCs are developed in a BCP PC consisting of alternating lamellae, one of which contains a chemically cross-linked, interpenetrated hydrogel network. The absorption of a nonvolatile ionic liquid into the domains of the interpenetrated network allows for further manipulation of SC by using multiple-order photonic reflections, giving rise to unprecedented visible SCs arising from reflective color mixing. Furthermore, by using a hygroscopic ionic liquid ink, a printable 3D touchless interactive display is created where 3D position of a human finger is efficiently visualized in different SCs as a function of finger-to-display distance.

SELECTION OF CITATIONS
SEARCH DETAIL
...