Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 20(10): 1581-1592, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37723246

ABSTRACT

Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.


Subject(s)
Microscopy , Neural Networks, Computer , Signal-To-Noise Ratio , Normal Distribution , Image Processing, Computer-Assisted/methods
2.
J Vis Exp ; (194)2023 04 28.
Article in English | MEDLINE | ID: mdl-37184275

ABSTRACT

As a vertebrate model animal, larval zebrafish are widely used in neuroscience and provide a unique opportunity to monitor whole-brain activity at the cellular resolution. Here, we provide an optimized protocol for performing whole-brain imaging of larval zebrafish using three-dimensional fluorescence microscopy, including sample preparation and immobilization, sample embedding, image acquisition, and visualization after imaging. The current protocol enables in vivo imaging of the structure and neuronal activity of a larval zebrafish brain at a cellular resolution for over 1 h using confocal microscopy and custom-designed fluorescence microscopy. The critical steps in the protocol are also discussed, including sample mounting and positioning, preventing bubble formation and dust in the agarose gel, and avoiding motion in images caused by incomplete solidification of the agarose gel and paralyzation of the fish. The protocol has been validated and confirmed in multiple settings. This protocol can be easily adapted for imaging other organs of a larval zebrafish.


Subject(s)
Brain , Imaging, Three-Dimensional , Intravital Microscopy , Microscopy, Fluorescence , Neuroimaging , Zebrafish , Animals , Brain/diagnostic imaging , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Neuroimaging/instrumentation , Neuroimaging/methods , Sepharose , Intravital Microscopy/instrumentation , Intravital Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...