Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Mater ; 17(7): 581-585, 2018 07.
Article in English | MEDLINE | ID: mdl-29915425

ABSTRACT

Vortices, occurring whenever a flow field 'whirls' around a one-dimensional core, are among the simplest topological structures, ubiquitous to many branches of physics. In the crystalline state, vortex formation is rare, since it is generally hampered by long-range interactions: in ferroic materials (ferromagnetic and ferroelectric), vortices are observed only when the effects of the dipole-dipole interaction are modified by confinement at the nanoscale1-3, or when the parameter associated with the vorticity does not couple directly with strain 4 . Here, we observe an unprecedented form of vortices in antiferromagnetic haematite (α-Fe2O3) epitaxial films, in which the primary whirling parameter is the staggered magnetization. Remarkably, ferromagnetic topological objects with the same vorticity and winding number as the α-Fe2O3 vortices are imprinted onto an ultra-thin Co ferromagnetic over-layer by interfacial exchange. Our data suggest that the ferromagnetic vortices may be merons (half-skyrmions, carrying an out-of plane core magnetization), and indicate that the vortex/meron pairs can be manipulated by the application of an in-plane magnetic field, giving rise to large-scale vortex-antivortex annihilation.

2.
Phys Rev Lett ; 117(17): 177601, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27824475

ABSTRACT

The physical properties of epitaxial films can fundamentally differ from those of bulk single crystals even above the critical thickness. By a combination of nonresonant x-ray magnetic scattering, neutron diffraction and vector-mapped x-ray magnetic linear dichroism photoemission electron microscopy, we show that epitaxial (111)-BiFeO_{3} films support submicron antiferromagnetic domains, which are magnetoelastically coupled to a coherent crystallographic monoclinic twin structure. This unique texture, which is absent in bulk single crystals, should enable control of magnetism in BiFeO_{3} film devices via epitaxial strain.

3.
Nano Lett ; 12(11): 5697-702, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23039785

ABSTRACT

Strong interest in resistive switching phenomena is driven by a possibility to develop electronic devices with novel functional properties not available in conventional systems. Bistable resistive devices are characterized by two resistance states that can be switched by an external voltage. Recently, memristors-electric circuit elements with continuously tunable resistive behavior-have emerged as a new paradigm for nonvolatile memories and adaptive electronic circuit elements. Employment of memristors can radically enhance the computational power and energy efficiency of electronic systems. Most of the existing memristor prototypes involve transition metal oxide resistive layers where conductive filaments formation and/or the interface contact resistance control the memristive behavior. In this paper, we demonstrate a new type of memristor that is based on a ferroelectric tunnel junction, where the tunneling conductance can be tuned in an analogous manner by several orders of magnitude by both the amplitude and the duration of the applied voltage. The ferroelectric tunnel memristors exhibit a reversible hysteretic nonvolatile resistive switching with a resistance ratio of up to 10(5) % at room temperature. The observed memristive behavior is attributed to the field-induced charge redistribution at the ferroelectric/electrode interface, resulting in the modulation of the interface barrier height.

4.
Adv Mater ; 24(9): 1209-16, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22278910

ABSTRACT

By using theoretical predictions based on first-principle calculations, we explore an interface engineering approach to stabilize polarization states in ferroelectric heterostructures with a thickness of just several nanometers.


Subject(s)
Barium Compounds/chemistry , Electronics/instrumentation , Nanostructures/chemistry , Oxides/chemistry , Ruthenium Compounds/chemistry , Barium/chemistry , Electricity , Strontium/chemistry , Surface Properties
5.
Nano Lett ; 9(10): 3539-43, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19697939

ABSTRACT

Using a set of scanning probe microscopy techniques, we demonstrate the reproducible tunneling electroresistance effect on nanometer-thick epitaxial BaTiO(3) single-crystalline thin films on SrRuO(3) bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by direct nanoscale visualization and control of polarization and tunneling current. The obtained results show a change in resistance by about 2 orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature. These results are promising for employing ferroelectric tunnel junctions in nonvolatile memory and logic devices.

6.
Phys Rev Lett ; 100(25): 257601, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18643702

ABSTRACT

Oxygen octahedral rotations are the most common phase transitions in perovskite crystal structures. Here we show that the color symmetry of such pure elastic distortions is isomorphic to magnetic point groups, which allows their probing through distinguishing polar versus magnetic symmetry. We demonstrate this isomorphism using nonlinear optical probing of the octahedral rotational transition in a compressively strained SrTiO3 thin film that exhibits ferroelectric (4mm) and antiferrodistortive (4{'}mm{'}) phases evolving through independent phase transitions. The approach has broader applicability for probing materials with lattice rotations that can be mapped to color groups.

7.
Phys Rev B Condens Matter ; 54(19): 14052-14060, 1996 Nov 15.
Article in English | MEDLINE | ID: mdl-9985325
8.
Phys Rev B Condens Matter ; 54(13): 8996-8999, 1996 Oct 01.
Article in English | MEDLINE | ID: mdl-9984616
SELECTION OF CITATIONS
SEARCH DETAIL
...