Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38534517

ABSTRACT

Polyether-ether-2-ketone (PEKK) is a high-performance thermoplastic polymer used in various fields, from aerospace to medical applications, due to its exceptional mechanical and thermal properties. Nonetheless, the mechanical behavior of 3D-printed PEKK still deserves to be more thoroughly investigated, especially in view of its production by 3D printing, where mechanical properties measured at different scales are likely to be correlated to one another and to all play a major role in determining biomechanical properties, which include mechanical strength on one side and osteointegration ability on the other side. This work explores the mechanical behavior of 3D-printed PEKK through a multiscale approach, having performed both nanoindentation tests and standard tensile and compression tests, where a detailed view of strain distribution was achieved through Digital Image Correlation (DIC) techniques. Furthermore, for specimens tested up to failure, their fractured surfaces were analyzed through Scanning Electron Microscopy (SEM) to clearly outline fracture modes. Additionally, the internal structure of 3D-printed PEKK was explored through Computed Tomography (CT) imaging, providing a three-dimensional view of the internal structure and the presence of voids and other imperfections. Finally, surface morphology was analyzed through confocal microscopy. The multiscale approach adopted in the present work offers information about the global and local behavior of the PEKK, also assessing its material properties down to the nanoscale. Due to its novelty as a polymeric material, no previous studies have approached a multiscale analysis of 3D-printed PEKK. The findings of this study contribute to a comprehensive understanding of 3D-printed PEKK along with criteria for process optimization in order to customize its properties to meet specific application requirements. This research not only advances the knowledge of PEKK as a 3D-printing material but also provides insights into the multifaceted nature of multiscale material characterization.

2.
J Mech Behav Biomed Mater ; 153: 106477, 2024 May.
Article in English | MEDLINE | ID: mdl-38428204

ABSTRACT

Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR). The mechanical behaviour was compared with the same lattice structures having constant density ratio. Electron Beam Melting technology was used to manufacture titanium alloy specimens with global relative densities from 10% to 30%. Functionally graded structures were obtained by increasing the relative density along the specimen, by individually designing the lattice's layers. Scanning electron and a digital microscopy were used to evaluate the dimensional mismatch between actual and designed structures. Compressive tests were carried out to obtain the mechanical properties and to evaluate the collapse modes of the structures in relation to their average relative density and lattice grading. Open-source Digital Image Correlation algorithm was applied to evaluate the deformation behaviour of the structures and to calculate their elastic moduli. The results showed that uniform density structures provide higher mechanical properties than functionally graded ones. The Digital Image Correlation results showed the possibility of effectively designing the different layers of functionally graded structures selecting desired local mechanical properties to mimic the different characteristics of cortical and cancellous bone.


Subject(s)
Cancellous Bone , Titanium , Humans , Porosity , Elastic Modulus , Titanium/chemistry , Alloys/chemistry
3.
J Funct Biomater ; 14(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36976049

ABSTRACT

The progress in additive manufacturing has remarkably increased the application of lattice materials in the biomedical field for the fabrication of scaffolds used as bone substitutes. Ti6Al4V alloy is widely adopted for bone implant application as it combines both biological and mechanical properties. Recent breakthroughs in biomaterials and tissue engineering have allowed the regeneration of massive bone defects, which require external intervention to be bridged. However, the repair of such critical bone defects remains a challenge. The present review collected the most significant findings in the literature of the last ten years on Ti6Al4V porous scaffolds to provide a comprehensive summary of the mechanical and morphological requirements for the osteointegration process. Particular attention was given on the effects of pore size, surface roughness and the elastic modulus on bone scaffold performances. The application of the Gibson-Ashby model allowed for a comparison of the mechanical performance of the lattice materials with that of human bone. This allows for an evaluation of the suitability of different lattice materials for biomedical applications.

4.
J Mech Behav Biomed Mater ; 138: 105656, 2023 02.
Article in English | MEDLINE | ID: mdl-36623402

ABSTRACT

In this research, a new lattice structure based on the octagonal geometry and produced by Additive Manufacturing (AM) technique was proposed. Eight octagons with the same dimensions are combined to each other forming a ring. To obtain an isotropic lattice structure, cubic symmetry was imposed; thus, the unit cell is made of three rings mutually perpendicular, one ring for each principal direction. The aim of this study is the morphological and mechanical characterization of the novel unit cell to check its suitability to the biomechanical field, along with its comparison with other lattice structures currently used as bone scaffold. Electron Beam Melting (EBM) technique was used to produce Ti6Al4V ELI alloy specimens of the novel unit cell and of the truncated octahedron (Kelvin) cell. Three different unit cell sizes were selected to investigate the effect of cell dimensions on the mechanical properties. Morphological analysis was performed through a scanning electron microscope (SEM), to compare the actual structures to the designed ones. On the whole, the new lattice structure provided adequate mechanical properties to be considered as a bone substitute; further tests will be focused on its osteointegration capability.


Subject(s)
Biomimetics , Bone and Bones , Porosity , Materials Testing , Prostheses and Implants , Alloys , Titanium/chemistry
5.
J Biomed Mater Res B Appl Biomater ; 111(3): 590-598, 2023 03.
Article in English | MEDLINE | ID: mdl-36208414

ABSTRACT

The lumbar intervertebral devices are widely used in the surgical treatment of lumbar diseases. The subsidence represents a serious clinical issue during the healing process, mainly when the interfaces between the implant and the vertebral bodies are not well designed. The aim of this study is the evaluation of subsidence risk for two different devices. The devices have the same shape, but one of them includes a filling micro lattice structure. The effect of the micro lattice structure on the subsidence behavior of the implant was evaluated by means of both experimental tests and finite element analyses. Compressive tests were carried out by using blocks made of grade 15 polyurethane, which simulate the vertebral bone. Non-linear, quasi-static finite element analyses were performed to simulate experimental and physiologic conditions. The experimental tests and the FE analyses showed that the subsidence risk is higher for the device without micro lattice structure, due to the smaller contact surface. Moreover, an overload in the central zone of the contact surface was detected in the same device and it could cause the implant failure. Thus, the micro lattice structure allows a homogenous pressure distribution at the implant-bone interface.


Subject(s)
Lumbar Vertebrae , Spinal Fusion , Lumbar Vertebrae/surgery , Titanium , Porosity , Electrons , Prostheses and Implants
6.
Med Biol Eng Comput ; 57(12): 2771-2781, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31741290

ABSTRACT

The aim of this study was the analysis of the mechanical behaviour of a partially porous lumbar custom-made cage by means of a subject-specific finite element analysis (FEA). The cage, made of Ti6Al4V ELI alloy, was produced via electron beam melting (EBM) process and surgically implanted in a female subject, 50 years old. The novelty of this study was the customized design of the cage and of its internal structure, which is impossible to obtain with the traditional production techniques. The 3D model of the spine was obtained from the computed tomography (CT) of the patient. Moreover, high-resolution industrial CT was also used to reconstruct a 3D model of the cage, with its real (as-produced) features, such as superficial roughness, morphology of the bulk and of the porous structure. The workflow was divided in several steps: the main finite element analyses were non-linear and quasi-static regarding: the rhombic dodecahedron (RD) unit cell of the porous structure; the device; the whole L4-L5 motion segment with the implanted cage. Stress distribution was calculated under compression load for all models. For the RD unit cell, the maximum stress appeared at the connected cross nodes, where notch effect was present. For the cage subjected to a load of 1 kN, the porous structure did not present any functional failure. For the whole biomechanical system subjected to a physiological load of 360 N, the calculated stress in the bone was smaller than its yield strength value. On the axial view, a zone with higher compressive stresses was present on the L5 vertebral body. This was due to the contact stress between the cage and the vertebra. From the comparison between FE results and the CT images of the spine, bone remodelling was supposed, with the formation of new bone. Graphical abstract Workflow showing the phases of the research.


Subject(s)
Lumbar Vertebrae/physiology , Spinal Fusion/instrumentation , Alloys , Biomechanical Phenomena/physiology , Electrons , Female , Finite Element Analysis , Humans , Internal Fixators , Middle Aged , Porosity , Prostheses and Implants , Range of Motion, Articular/physiology , Spinal Fusion/methods , Stress, Mechanical , Titanium/chemistry
7.
Proc Inst Mech Eng H ; 227(7): 757-66, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23636754

ABSTRACT

In this article, a subject-specific finite element analysis has been developed to study a clinical case of a surgically misaligned hip prosthesis with an ultrashort stem. It was set out to study the strain energy density pattern, comparing the results obtained with computed tomography images. The authors developed two other numerical models: the first one analyzes the stress and strain distributions in the healthy femur (without prosthesis) and the second one analyzes the same boneimplant biomechanical system of the clinical case but assuming the prosthesis in the proper position. The misaligned prosthesis produced an overload at the proximal posterior plane of the femur, as confirmed by computed tomography images, which detect the formation of new bone. The numerical model of the correctly positioned prosthesis demonstrated that the bone is not overloaded and that the position of neutral axis does not significantly shift from the physiological condition.


Subject(s)
Arthroplasty, Replacement, Hip/methods , Hip Prosthesis , Adult , Biomechanical Phenomena , Female , Femur/anatomy & histology , Femur/physiology , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Medical Errors , Models, Biological , Muscle, Skeletal/physiology , Range of Motion, Articular , Stress, Mechanical , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...