Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(6): eadk3384, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335290

ABSTRACT

Disruption of cell division cycle associated 7 (CDCA7) has been linked to aberrant DNA hypomethylation, but the impact of DNA methylation loss on transcription has not been investigated. Here, we show that CDCA7 is critical for maintaining global DNA methylation levels across multiple tissues in vivo. A pathogenic Cdca7 missense variant leads to the formation of large, aberrantly hypomethylated domains overlapping with the B genomic compartment but without affecting the deposition of H3K9 trimethylation (H3K9me3). CDCA7-associated aberrant DNA hypomethylation translated to localized, tissue-specific transcriptional dysregulation that affected large gene clusters. In the brain, we identify CDCA7 as a transcriptional repressor and epigenetic regulator of clustered protocadherin isoform choice. Increased protocadherin isoform expression frequency is accompanied by DNA methylation loss, gain of H3K4 trimethylation (H3K4me3), and increased binding of the transcriptional regulator CCCTC-binding factor (CTCF). Overall, our in vivo work identifies a key role for CDCA7 in safeguarding tissue-specific expression of gene clusters via the DNA methylation pathway.


Subject(s)
Cell Cycle Proteins , Nuclear Proteins , DNA , DNA Methylation , Protein Isoforms/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Mice , Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism
2.
Sci Rep ; 8(1): 5762, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29622773

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 7(1): 9322, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839193

ABSTRACT

Gastrulation initiates with the formation of the primitive streak, during which, cells of the epiblast delaminate to form the mesoderm and definitive endoderm. At this stage, the pluripotent cell population of the epiblast undergoes very rapid proliferation and extensive epigenetic programming. Here we show that Fam208a, a new epigenetic modifier, is essential for early post-implantation development. We show that Fam208a mutation leads to impaired primitive streak elongation and delayed epithelial-to-mesenchymal transition. Fam208a mutant epiblasts had increased expression of p53 pathway genes as well as several pluripotency-associated long non-coding RNAs. Fam208a mutants exhibited an increase in p53-driven apoptosis and complete removal of p53 could partially rescue their gastrulation block. This data demonstrates a new in vivo function of Fam208a in maintaining epiblast fitness, establishing it as an important factor at the onset of gastrulation when cells are exiting pluripotency.


Subject(s)
Epigenesis, Genetic , Germ Layers/embryology , Germ Layers/physiology , Nuclear Proteins/metabolism , Animals , Apoptosis , Epithelial-Mesenchymal Transition , Mice , Mutation , Nuclear Proteins/genetics , Primitive Streak/embryology
4.
Mamm Genome ; 25(7-8): 293-303, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24781204

ABSTRACT

An ENU mutagenesis screen to identify novel epigenetic modifiers was established in mice carrying a multi-copy GFP transgene, which is expressed in a variegated manner in erythrocytes and is highly sensitive to epigenetic silencing. The screen has produced mouse mutants of both known modifiers of epigenetic state, such as Dnmt1 and Smarca5, and novel modifiers, such as Smchd1 and Rlf. Here we report two mouse lines generated from the screen, MommeD6 and MommeD20, with point mutations in D14Abb1e. These are the first mouse mutants of D14Abb1e (also known as Fam208a), a gene about which little is known. Heterozygous intercrosses show that homozygous mutants from both the MommeD6 and MommeD20 lines are not viable beyond gastrulation, demonstrating an important role for D14Abb1e in development. We demonstrate that haploinsufficiency for D14Abb1e effects transgene expression at the RNA level. Analysis of the predicted D14Abb1e protein sequence reveals that it contains putative nuclear localisation signals and a domain of unknown function, DUF3715. Our studies reveal that D14Abb1e is localised to the nucleus and is expressed in skin and testes.


Subject(s)
Embryonic Development , Nuclear Proteins/genetics , Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Cell Nucleus/metabolism , Erythrocytes/metabolism , Fluorescence , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Sequence Data , Mutation/genetics , Nuclear Proteins/chemistry , Protein Transport , Proteins/chemistry , Skin/metabolism , Testis/metabolism , Transgenes
5.
Genome Biol ; 14(9): R96, 2013.
Article in English | MEDLINE | ID: mdl-24025402

ABSTRACT

BACKGROUND: We have used a sensitized ENU mutagenesis screen to produce mouse lines that carry mutations in genes required for epigenetic regulation. We call these lines Modifiers of murine metastable epialleles (Mommes). RESULTS: We report a basic molecular and phenotypic characterization for twenty of the Momme mouse lines, and in each case we also identify the causative mutation. Three of the lines carry a mutation in a novel epigenetic modifier, Rearranged L-myc fusion (Rlf), and one gene, Rap-interacting factor 1 (Rif1), has not previously been reported to be involved in transcriptional regulation in mammals. Many of the other lines are novel alleles of known epigenetic regulators. For two genes, Rlf and Widely-interspaced zinc finger (Wiz), we describe the first mouse mutants. All of the Momme mutants show some degree of homozygous embryonic lethality, emphasizing the importance of epigenetic processes. The penetrance of lethality is incomplete in a number of cases. Similarly ,abnormalities in phenotype seen in the heterozygous individuals of some lines occur with incomplete penetrance. CONCLUSIONS: Recent advances in sequencing enhance the power of sensitized mutagenesis screens to identify the function of previously uncharacterized factors and to discover additional functions for previously characterized proteins. The observation of incomplete penetrance of phenotypes in these inbred mutant mice, at various stages of development, is of interest. Overall, the Momme collection of mouse mutants provides a valuable resource for researchers across many disciplines.


Subject(s)
Epigenesis, Genetic , Ethylnitrosourea/pharmacology , Genes, Lethal , Mutagenesis , Mutagens/pharmacology , Mutation/drug effects , Alleles , Animals , Gene Expression Regulation , Genome-Wide Association Study , Genotype , Guanine Nucleotide Exchange Factors , Heterozygote , Homozygote , Kruppel-Like Transcription Factors/genetics , Mice , Nerve Tissue Proteins/genetics , Phenotype , Telomere-Binding Proteins/genetics , Transcription Factors/genetics
6.
Mamm Genome ; 24(5-6): 206-17, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23636699

ABSTRACT

Observations of inherited phenotypes that cannot be explained solely through genetic inheritance are increasing. Evidence points to transmission of non-DNA molecules in the gamete as mediators of the phenotypes. However, in most cases it is unclear what the molecules are, with DNA methylation, chromatin proteins, and small RNAs being the most prominent candidates. From a screen to generate novel mouse mutants of genes involved in epigenetic reprogramming, we produced a DNA methyltransferase 3b allele that is missing exon 13. Mice that are homozygous for the mutant allele have smaller stature and reduced viability, with particularly high levels of female post-natal death. Reduced DNA methylation was also detected at telocentric repeats and the X-linked Hprt gene. However, none of the abnormal phenotypes or DNA methylation changes worsened with multiple generations of homozygous mutant inbreeding. This suggests that in our model the abnormalities are reset each generation and the processes of transgenerational epigenetic reprogramming are effective in preventing their inheritance.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Mice/genetics , Alleles , Animals , Base Sequence , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Epigenesis, Genetic , Exons , Female , Homozygote , Male , Mice/growth & development , Mice/metabolism , Mice, Transgenic , Molecular Sequence Data , Pedigree , DNA Methyltransferase 3B
7.
Biol Reprod ; 86(1): 1-12, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21900680

ABSTRACT

Disruptions in the regulatory pathways controlling sex determination and differentiation can cause disorders of sex development, often compromising reproductive function. Although extensive efforts have been channeled into elucidating the regulatory mechanisms controlling the many aspects of sexual differentiation, the majority of disorders of sex development phenotypes are still unexplained at the molecular level. In this study, we have analyzed the potential involvement of Wnt5a in sexual development and show in mice that Wnt5a is male-specifically upregulated within testicular interstitial cells at the onset of gonad differentiation. Homozygous deletion of Wnt5a affected sexual development in male mice, causing testicular hypoplasia and bilateral cryptorchidism despite the Leydig cells producing factors such as Hsd3b1 and Insl3. Additionally, Wnt5a-null embryos of both sexes showed a significant reduction in gonadal germ cell numbers, which was caused by aberrant primordial germ cell migration along the hindgut endoderm prior to gonadal colonization. Our results indicate multiple roles for Wnt5a during mammalian reproductive development and help to clarify further the etiology of Robinow syndrome (OMIM 268310), a disease previously linked to the WNT5A pathway.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Sexual Maturation/physiology , Wnt Proteins/metabolism , Animals , Cryptorchidism , Fetus/physiology , Germ Cells , Homozygote , Male , Mice , Sex Determination Processes/physiology , Signal Transduction , Testis/embryology , Wnt Proteins/genetics , Wnt-5a Protein
8.
Methods Enzymol ; 420: 136-62, 2006.
Article in English | MEDLINE | ID: mdl-17161697

ABSTRACT

Gene trapping in embryonic stem cells (ESCs) generates random, sequence-tagged insertional mutations, which can often report the gene expression pattern of the mutated gene. This mutagenesis strategy has often been coupled to expression or function-based assays in gene discovery screens. The availability of the mouse genome sequence has shifted gene trapping from a gene discovery platform to a high-throughput mutagenesis platform. At present, a concerted worldwide effort is underway to develop a library of loss-of-function mutations in all mouse genes. The International Gene Trap Consortium (IGTC) is leading the way by making a first pass of the genome by random mutagenesis before a high-throughput gene targeting program takes over. In this chapter, we provide a methods guidebook to exploring and using the IGTC resource, explain the different kinds of vectors and insertions that reside in the different libraries, and provide advice and methods for investigators to design novel expression-based "cottage industry" screens.


Subject(s)
Embryonic Stem Cells , Mutagenesis, Insertional , Animals , Cell Culture Techniques , Clone Cells , Computational Biology , Embryonic Stem Cells/classification , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Expressed Sequence Tags/metabolism , Genetic Vectors , Humans , Mice
9.
Nucleic Acids Res ; 32(Database issue): D557-9, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14681480

ABSTRACT

Gene trap mutagenesis of mouse embryonic stem cells generates random loss-of-function mutations, which can be identified by a sequence tag and can often report the endogenous expression of the mutated gene. The Centre for Modeling Human Disease is performing expression- and sequence-based screens of gene trap insertions to generate new mouse mutations as a resource for the scientific community. The gene trap insertions are screened using multiplexed in vitro differentiation and induction assays, and sequence tags are generated to complement expression profiles. Researchers may search for insertions in genes expressed in target cell lineages, under specific in vitro conditions, or based upon sequence identity via an online searchable database (http://www.cmhd.ca/sub/genetrap.asp). The clones are available as a resource to researchers worldwide to help to functionally annotate the mammalian genome and will serve as a source to test candidate loci identified by phenotype-driven mutagenesis screens.


Subject(s)
Databases, Genetic , Disease Models, Animal , Disease , Gene Expression Profiling , Mutagenesis , Animals , Cell Lineage , Cloning, Molecular , Genetic Complementation Test , Genomics , Humans , Information Storage and Retrieval , Internet , Mice , Organ Specificity , Proteomics , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...