Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cells ; 12(9)2023 05 04.
Article in English | MEDLINE | ID: mdl-37174713

ABSTRACT

Elongation of the posterior body axis is distinct from that of the anterior trunk and head. Early drivers of posterior elongation are the neural plate/tube and notochord, later followed by the presomitic mesoderm (PSM), together with the neural tube and notochord. In axolotl, posterior neural plate-derived PSM is pushed posteriorly by convergence and extension of the neural plate. The PSM does not go through the blastopore but turns anteriorly to join the gastrulated paraxial mesoderm. To gain a deeper understanding of the process of axial elongation, a detailed characterization of PSM morphogenesis, which precedes somite formation, and of other tissues (such as the epidermis, lateral plate mesoderm and endoderm) is needed. We investigated these issues with specific tissue labelling techniques (DiI injections and GFP+ tissue grafting) in combination with optical tissue clearing and 3D reconstructions. We defined a spatiotemporal order of PSM morphogenesis that is characterized by changes in collective cell behaviour. The PSM forms a cohesive tissue strand and largely retains this cohesiveness even after epidermis removal. We show that during embryogenesis, the PSM, as well as the lateral plate and endoderm move anteriorly, while the net movement of the axis is posterior.


Subject(s)
Mesoderm , Neural Plate , Mesoderm/physiology , Morphogenesis , Embryonic Development , Muscles
2.
Front Cell Dev Biol ; 8: 622308, 2020.
Article in English | MEDLINE | ID: mdl-33505974

ABSTRACT

Vertebrate dentitions arise at various places within the oropharyngeal cavity including the jaws, the palate, or the pharynx. These dentitions develop in a highly organized way, where new tooth germs are progressively added adjacent to the initiator center, the first tooth. At the same time, the places where dentitions develop house the contact zones between the outer ectoderm and the inner endoderm, and this colocalization has instigated various suggestions on the roles of germ layers for tooth initiation and development. Here, we study development of the axolotl dentition, which is a complex of five pairs of tooth fields arranged into the typically tetrapod outer and inner dental arcades. By tracking the expression patterns of odontogenic genes, we reason that teeth of both dental arcades originate from common tooth-competent zones, one present on the mouth roof and one on the mouth floor. Progressive compartmentalization of these zones and a simultaneous addition of new tooth germs distinct for each prospective tooth field subsequently control the final shape and composition of the axolotl dentition. Interestingly, by following the fate of the GFP-labeled oral ectoderm, we further show that, in three out of five tooth field pairs, the first tooth develops right at the ecto-endodermal boundary. Our results thus indicate that a single tooth-competent zone gives rise to both dental arcades of a complex tetrapod dentition. Further, we propose that the ecto-endodermal boundary running through this zone should be accounted for as a potential source of instruction factors instigating the onset of the odontogenic program.

3.
Dev Biol ; 422(2): 155-170, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28017643

ABSTRACT

Classical grafting experiments in the Mexican axolotl had shown that the posterior neural plate of the neurula is no specified neuroectoderm but gives rise to somites of the tail and posterior trunk. The bipotentiality of this region with neuromesodermal progenitor cell populations was revealed more recently also in zebrafish, chick, and mouse. We reinvestigated the potency of the posterior plate in axolotl using grafts from transgenic embryos, immunohistochemistry, and in situ hybridization. The posterior plate is brachyury-positive except for its more anterior parts which express sox2. Between anterior and posterior regions of the posterior plate a small domain with sox2+ and bra+ cells exists. Lineage analysis of grafted GFP-labeled posterior plate tissue revealed that posterior GFP+ cells move from dorsal to ventral, form the posterior wall, turn anterior bilaterally, and join the gastrulated paraxial presomitic mesoderm. More anterior sox2+/GFP+ cells, however, are integrated into the developing spinal cord. Tail notochord is formed from axial mesoderm involuted already during gastrulation. Thus the posterior neural plate is a postgastrula source of paraxial mesoderm, which performs an anterior turn, a novel morphogenetic movement. More anterior plate cells, in contrast, do not turn anteriorly but become specified to form tail spinal cord.


Subject(s)
Ambystoma mexicanum/embryology , Mesoderm/embryology , Neural Plate/embryology , Neural Tube/embryology , Spinal Cord/embryology , Tail/embryology , Animals , Animals, Genetically Modified , Cells, Cultured , Fetal Proteins/metabolism , Gastrulation/physiology , Green Fluorescent Proteins/genetics , Notochord/embryology , SOXB1 Transcription Factors/biosynthesis , Somites/embryology , Stem Cells/cytology , T-Box Domain Proteins/metabolism
4.
Sci Rep ; 5: 11428, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26086331

ABSTRACT

Mesenchyme is an embryonic precursor tissue that generates a range of structures in vertebrates including cartilage, bone, muscle, kidney, and the erythropoietic system. Mesenchyme originates from both mesoderm and the neural crest, an ectodermal cell population, via an epithelial to mesenchymal transition (EMT). Because ectodermal and mesodermal mesenchyme can form in close proximity and give rise to similar derivatives, the embryonic origin of many mesenchyme-derived tissues is still unclear. Recent work using genetic lineage tracing methods have upended classical ideas about the contributions of mesodermal mesenchyme and neural crest to particular structures. Using similar strategies in the Mexican axolotl (Ambystoma mexicanum), and the South African clawed toad (Xenopus laevis), we traced the origins of fin mesenchyme and tail muscle in amphibians. Here we present evidence that fin mesenchyme and striated tail muscle in both animals are derived solely from mesoderm and not from neural crest. In the context of recent work in zebrafish, our experiments suggest that trunk neural crest cells in the last common ancestor of tetrapods and ray-finned fish lacked the ability to form ectomesenchyme and its derivatives.


Subject(s)
Amphibians/embryology , Mesoderm/embryology , Amphibians/metabolism , Animals , Biomarkers , Epidermis/embryology , Epidermis/metabolism , Larva , Mesoderm/metabolism , Muscles/embryology , Neural Crest/embryology , Neural Crest/metabolism , Tail/embryology
5.
PLoS One ; 7(12): e52244, 2012.
Article in English | MEDLINE | ID: mdl-23300623

ABSTRACT

BACKGROUND: A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. RESULTS: We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. CONCLUSIONS: Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.


Subject(s)
Ambystoma mexicanum/embryology , Neck/embryology , Neural Crest/anatomy & histology , Shoulder/embryology , Animals
6.
Dev Dyn ; 239(7): 2048-57, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20549718

ABSTRACT

Several studies have reported that endogenous ion currents are involved in a wide range of biological processes from single cell and tissue behavior to regeneration. Various methods are used to assess intracellular and local ion dynamics in biological systems, e.g., patch clamping and vibrating probes. Here, we introduce an approach to detect ion kinetics in vivo using a noninvasive method that can electrophysiologically characterize an entire experimental tissue region or organism. Ion-specific vital dyes have been successfully used for live imaging of intracellular ion dynamics in vitro. Here, we demonstrate that cellular pH, cell membrane potential, calcium, sodium and potassium can be monitored in vivo during tail regeneration in the axolotl (Ambystoma mexicanum) using ion-specific vital dyes. Thus, we suggest that ion-specific vital dyes can be a powerful tool to obtain electrophysiological data during crucial biological events in vivo.


Subject(s)
Ambystoma mexicanum/embryology , Ambystoma mexicanum/metabolism , Diagnostic Imaging , Regeneration/physiology , Tail/embryology , Tail/metabolism , Ambystoma mexicanum/physiology , Animals , Calcium/metabolism , Electrophysiology , Hydrogen-Ion Concentration , Membrane Potentials/physiology , Potassium/metabolism , Sodium/metabolism , Tail/physiology
7.
Nature ; 460(7251): 60-5, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19571878

ABSTRACT

During limb regeneration adult tissue is converted into a zone of undifferentiated progenitors called the blastema that reforms the diverse tissues of the limb. Previous experiments have led to wide acceptance that limb tissues dedifferentiate to form pluripotent cells. Here we have reexamined this question using an integrated GFP transgene to track the major limb tissues during limb regeneration in the salamander Ambystoma mexicanum (the axolotl). Surprisingly, we find that each tissue produces progenitor cells with restricted potential. Therefore, the blastema is a heterogeneous collection of restricted progenitor cells. On the basis of these findings, we further demonstrate that positional identity is a cell-type-specific property of blastema cells, in which cartilage-derived blastema cells harbour positional identity but Schwann-derived cells do not. Our results show that the complex phenomenon of limb regeneration can be achieved without complete dedifferentiation to a pluripotent state, a conclusion with important implications for regenerative medicine.


Subject(s)
Ambystoma/physiology , Cell Lineage/physiology , Extremities/growth & development , Regeneration/physiology , Ambystoma/embryology , Animals , Animals, Genetically Modified , Cartilage/cytology , Cell Differentiation/radiation effects , Cell Lineage/radiation effects , Cell Movement , Epidermal Cells , Extremities/innervation , Muscles/cytology , Organ Specificity , Schwann Cells/cytology , Tendons/cytology
8.
Nature ; 455(7214): 795-8, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18794902

ABSTRACT

The oral cavity of vertebrates is generally thought to arise as an ectodermal invagination. Consistent with this, oral teeth are proposed to arise exclusively from ectoderm, contributing to tooth enamel epithelium, and from neural crest derived mesenchyme, contributing to dentin and pulp. Yet in many vertebrate groups, teeth are not restricted only to the oral cavity, but extend posteriorly as pharyngeal teeth that could be derived either directly from the endodermal epithelium, or from the ectodermal epithelium that reached this location through the mouth or through the pharyngeal slits. However, when the oropharyngeal membrane, which forms a sharp ecto/endodermal border, is broken, the fate of these cells is poorly known. Here, using transgenic axolotls with a combination of fate-mapping approaches, we present reliable evidence of oral teeth derived from both the ectoderm and endoderm and, moreover, demonstrate teeth with a mixed ecto/endodermal origin. Despite the enamel epithelia having a different embryonic source, oral teeth in the axolotl display striking developmental uniformities and are otherwise identical. This suggests a dominant role for the neural crest mesenchyme over epithelia in tooth initiation and, from an evolutionary point of view, that an essential factor in teeth evolution was the odontogenic capacity of neural crest cells, regardless of possible 'outside-in' or 'inside-out' influx of the epithelium.


Subject(s)
Ambystoma mexicanum/embryology , Ectoderm/cytology , Endoderm/cytology , Epithelium/embryology , Tooth/cytology , Tooth/embryology , Animals , Animals, Genetically Modified , Ectoderm/embryology , Endoderm/embryology , Morphogenesis
9.
Differentiation ; 76(2): 206-18, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17662068

ABSTRACT

Wild-type (dark) and white mutant axolotl (Ambystoma mexicanum) embryos were used to investigate the role of the secreted growth factor bone morphogenetic protein-4 (BMP-4) and its antagonist, Noggin, in dorso-lateral trunk neural crest (NC) migration. Implantation of a BMP-4-coated microbead caused a melanophore-free zone around the bead, reduction of the dorsal fin above the bead, and disappearance of myotome tissue. We established a novel method that allows controlled induction of protein synthesis and release. Xenopus animal cap (XAC) cells injected with heat shock-inducible constructs for BMP-4 and Noggin were implanted into axolotl embryos and protein expression was induced at defined time points. With this approach, we could demonstrate for the first time that Noggin can stimulate melanophore migration in the white mutant. We further showed that implantation of BMP-4 expressing XAC cells alters pigment cell distribution without affecting muscle and dorsal fin development.


Subject(s)
Ambystoma mexicanum/embryology , Bone Morphogenetic Proteins/metabolism , Carrier Proteins/metabolism , Neural Crest/embryology , Signal Transduction , Ambystoma mexicanum/metabolism , Animals , Bone Morphogenetic Protein 4 , Cell Movement , Female , Mesoderm/cytology , Mesoderm/metabolism , Neural Crest/cytology , Xenopus Proteins , Xenopus laevis
10.
Dev Dyn ; 236(2): 389-403, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17183528

ABSTRACT

Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at pre- and early-migratory stages revealed that individual neural crest cells migrate away from the neural tube along two main routes: first, dorsolaterally between the epidermis and somites and, later, ventromedially between the somites and neural tube/notochord. Dorsolaterally migrating crest primarily forms pigment cells, with those from anterior (but not mid or posterior) trunk neural folds also contributing glia and neurons to the lateral line. White mutants have impaired dorsolateral but normal ventromedial migration. At late migratory stages, most labeled cells move along the ventromedial pathway or into the dorsal fin. Contrasting with other anamniotes, axolotl has a minor neural crest contribution to the dorsal fin, most of which arises from the dermomyotome. Taken together, the results reveal stereotypic migration and differentiation of neural crest cells in axolotl that differ from other vertebrates in timing of entry onto the dorsolateral pathway and extent of contribution to some derivatives.


Subject(s)
Ambystoma/embryology , Cell Differentiation/physiology , Cell Movement/physiology , Neural Crest/embryology , Animals , Carbocyanines , Fluorescent Dyes , Image Processing, Computer-Assisted , Immunohistochemistry , In Situ Hybridization , Microscopy, Confocal , Microscopy, Fluorescence , Neural Crest/cytology
11.
Dev Biol ; 290(2): 386-97, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16387293

ABSTRACT

The development of transgenesis in axolotls is crucial for studying development and regeneration as it would allow for long-term cell fate tracing as well as gene expression analysis. We demonstrate here that plasmid injection into the one-cell stage axolotl embryo generates mosaic transgenic animals that display germline transmission of the transgene. The inclusion of SceI meganuclease in the injections (Thermes, V., Grabher, C., Ristoratore, F., Bourrat, F., Choulika, A., Wittbrodt, J., Joly, J.S., 2002. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech. Dev. 118, 91-98) resulted in a higher percentage of F0 animals displaying strong expression throughout the body. This represents the first demonstration in the axolotl of germline transmission of a transgene. Using this technique we have generated a germline transgenic animal expressing GFP ubiquitously in all tissues examined. We have used this animal to study cell fate in the dorsal fin during development. We have uncovered a contribution of somite cells to dorsal fin mesenchyme in the axolotl, which was previously assumed to derive solely from neural crest. We have also studied the role of blood during tail regeneration by transplanting the ventral blood-forming region from GFP+ embryos into unlabeled hosts. During tail regeneration, we do not observe GFP+ cells contributing to muscle or nerve, suggesting that during tail regeneration blood stem cells do not undergo significant plasticity.


Subject(s)
Ambystoma/embryology , Ambystoma/genetics , Extremities/embryology , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/metabolism , Mesoderm/metabolism , Regeneration , Animals , Animals, Genetically Modified , Blood Cells/metabolism , Cell Lineage , Female , Green Fluorescent Proteins/genetics , Hematopoietic Stem Cells/metabolism , Male , Microscopy, Fluorescence , Models, Biological , Neural Crest/metabolism , Neurons/metabolism , Plasmids/metabolism , Promoter Regions, Genetic , Time Factors , Transgenes
12.
Dev Biol ; 276(1): 225-36, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15531376

ABSTRACT

Cartilage of the vertebrate jaw is derived from cranial neural crest cells that migrate to the first pharyngeal arch and form a dorsal "maxillary" and a ventral "mandibular" condensation. It has been assumed that the former gives rise to palatoquadrate and the latter to Meckel's (mandibular) cartilage. In anamniotes, these condensations were thought to form the framework for the bones of the adult jaw and, in amniotes, appear to prefigure the maxillary and mandibular facial prominences. Here, we directly test the contributions of these neural crest condensations in axolotl and chick embryos, as representatives of anamniote and amniote vertebrate groups, using molecular and morphological markers in combination with vital dye labeling of late-migrating cranial neural crest cells. Surprisingly, we find that both palatoquadrate and Meckel's cartilage derive solely from the ventral "mandibular" condensation. In contrast, the dorsal "maxillary" condensation contributes to trabecular cartilage of the neurocranium and forms part of the frontonasal process but does not contribute to jaw joints as previously assumed. These studies reveal the morphogenetic processes by which cranial neural crest cells within the first arch build the primordia for jaw cartilages and anterior cranium.


Subject(s)
Ambystoma/embryology , Biological Evolution , Mandible/embryology , Maxilla/embryology , Animals , Body Patterning , Cartilage/embryology , Cartilage/ultrastructure , Chick Embryo , Coloring Agents , Embryo, Nonmammalian , Fluorescein-5-isothiocyanate , Green Fluorescent Proteins , In Situ Hybridization , Mandible/growth & development , Maxilla/growth & development , Models, Biological , Morphogenesis , Neural Crest/cytology , Staining and Labeling
13.
Genome Biol ; 5(9): R67, 2004.
Article in English | MEDLINE | ID: mdl-15345051

ABSTRACT

BACKGROUND: The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum. RESULTS: Two cDNA libraries, one made from stage 18-22 embryos and the other from day-6 regenerating tail blastemas, generated 17,352 sequences. From the sequenced ESTs, 6,377 contigs were assembled that probably represent 25% of the expressed genes in this organism. Sequence comparison revealed significant homology to entries in the NCBI non-redundant database. Further examination of this gene set revealed the presence of genes involved in important cell and developmental processes, including cell proliferation, cell differentiation and cell-cell communication. On the basis of these data, we have performed phylogenetic analysis of key cell-cycle regulators. Interestingly, while cell-cycle proteins such as the cyclin B family display expected evolutionary relationships, the cyclin-dependent kinase inhibitor 1 gene family shows an unusual evolutionary behavior among the amphibians. CONCLUSIONS: Our analysis reveals the importance of a comprehensive sequence set from a representative of the Caudata and illustrates that the EST sequence database is a rich source of molecular, developmental and regeneration studies. To aid in data mining, the ESTs have been organized into an easily searchable database that is freely available online.


Subject(s)
Ambystoma/embryology , Ambystoma/genetics , Expressed Sequence Tags , Gene Library , Regeneration/genetics , Reproduction, Asexual/genetics , Sequence Analysis, DNA/methods , Animals , Base Composition/genetics , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Differentiation/genetics , Cell Proliferation , Conserved Sequence/genetics , Contig Mapping/methods , Cyclin-Dependent Kinase Inhibitor p21 , Databases, Genetic , Embryo, Nonmammalian/chemistry , Embryo, Nonmammalian/metabolism , Genes/genetics , Genes, cdc , Multigene Family/genetics , Neural Crest/chemistry , Neural Crest/metabolism , Phylogeny , RNA/metabolism , Sequence Homology, Nucleic Acid , Tail/embryology
14.
Dev Biol ; 266(2): 252-69, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14738875

ABSTRACT

Cranial neural crest cells migrate in a precisely segmented manner to form cranial ganglia, facial skeleton and other derivatives. Here, we investigate the mechanisms underlying this patterning in the axolotl embryo using a combination of tissue culture, molecular markers, scanning electron microscopy and vital dye analysis. In vitro experiments reveal an intrinsic component to segmental migration; neural crest cells from the hindbrain segregate into distinct streams even in the absence of neighboring tissue. In vivo, separation between neural crest streams is further reinforced by tight juxtapositions that arise during early migration between epidermis and neural tube, mesoderm and endoderm. The neural crest streams are dense and compact, with the cells migrating under the epidermis and outside the paraxial and branchial arch mesoderm with which they do not mix. After entering the branchial arches, neural crest cells conduct an "outside-in" movement, which subsequently brings them medially around the arch core such that they gradually ensheath the arch mesoderm in a manner that has been hypothesized but not proven in zebrafish. This study, which represents the most comprehensive analysis of cranial neural crest migratory pathways in any vertebrate, suggests a dual process for patterning the cranial neural crest. Together with an intrinsic tendency to form separate streams, neural crest cells are further constrained into channels by close tissue apposition and sorting out from neighboring tissues.


Subject(s)
Ambystoma mexicanum/embryology , Branchial Region/embryology , Cell Movement/physiology , Morphogenesis , Neural Crest/physiology , Ambystoma mexicanum/anatomy & histology , Animals , Apoptosis/physiology , Body Patterning , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epidermis/metabolism , In Situ Hybridization , Mesoderm/metabolism , Neural Crest/cytology , Skeleton , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Rouxs Arch Dev Biol ; 201(6): 340-345, 1992 Oct.
Article in English | MEDLINE | ID: mdl-28305852

ABSTRACT

An expression vector was constructed containing the entire bovine papilloma virus (BPV-1) genome and part of the a-actin gene of Xenopus laevis cloned in the antisense orientation into the neomycin resistance gene under the control of the herpes simplex virus (HSV) thymidine kinase (TK) promoter. When this vector is microinjected into X. laevis embryos it replicates extrachromosomally, at least up to the tadpole stage, and a fusion RNA is synthesized after the mid blastula transition (MBT). The expression of the antisense gene results in a morphological abnormality of somites demonstrating that antisense RNA generated by an episomal replicating expression vector can inhibit the expression of a selected gene during early embryogenesis of X. laevis.

16.
Wilehm Roux Arch Dev Biol ; 193(6): 357-369, 1984 Nov.
Article in English | MEDLINE | ID: mdl-28305101

ABSTRACT

The barred pigment pattern (Lehman 1957) of the axolotl larva is best observed from stage 41 onwards, where it already consists of alternating transverse bands of melanophores and xanthophores along the dorsal side of the trunk. The present study investigateswhen the two populations of neural crest derived chromatophores, melanophores and xanthophores become determined andhow they interact to create the barred pigment pattern. The presence of phenol oxidase (tyrosinase) in melanophores (revealed by dopa incubation) and pteridines in xanthophores (visualized by fluorescence) were used as markers for cell differentiation in order to recognize melanophores and xanthophores before they became externally visible. It was found that melanophores and xanthophores were already determined in the premigratory neural crest, at stages 30/31 and 35-36, respectively. Between stages 35-36 and 38 they were arranged in a prepattern of several distinct, mixed chromatophore groups along the dorsal trunk, morphologically correlated in the scanning electron microscope with humps on the original crest cell string. While the occurrence of xanthophores was restricted to the chromatophore groups and around them, melanophores were already uniformly distributed in the dorsolateral flank area, having migrated from trunk neural crest portions including the groups. The bar component of the pigment pattern was subsequently initiated by xanthophores, which caused melanophores in and around the chromatophore groups to fade or become invisible. The barred pattern was established by the formation of alternating clusters of "like" cells, melanophores and xanthophores.

17.
Wilehm Roux Arch Dev Biol ; 191(1): 5-18, 1982 Jan.
Article in English | MEDLINE | ID: mdl-28305417

ABSTRACT

The change in distribution of melanophores from stage 28+ (uniform melanophore pattern) to stage 34 (banded melanophore pattern) and the participation of xanthophores in these changes has been investigated inTriturus alpestris embryos by studying the social behaviour of single cells. While melanophores are clearly visible from outside the embryo at stage 28+, xanthophores cannot be recognized from the outside until after stage 34. In ultrathin sections of stage 34 embryos, xanthophores are observed alternating with melanophores in a zonal distribution (Epperlein 1982). Using detached pieces of dorsolateral trunk skin, which retain their chromatophores after detachment, the entire distribution of melanophores and xanthophores can be visualized in a scanning electron microscope (SEM). In ambiguous cases (early stages), cells were reprocessed for transmission electron microscopy (TEM) and the presence of the characteristic pigment organelles was assessed. In addition, xanthophores were specifically identified by pteridine fluorescence with dilute ammonia. Pteridines were also identified chromatographically in skin homogenates. The combination of these methods allowed precise identification and quantitative determination of melanophores and xanthophores. Both cell types were present as codistributed, biochemically differentiated cells at stage 28+. Changes in the pattern up to stage 34 were due to the rearrangement at the epidermal-mesodermal interface of a relatively fixed number of melanophores which became preferentially localised at the dorsal somite edge and at the lateral plate mesoderm, and to the distribution of an increasing number of xanthophores to subepidermal locations in the dorsal fin and between the melanophore bands. Concomitant was an increase in the thickness of the epidermal basement membrane and a change in shape of chromatophores from elongate via stellate to rosette shaped, which may be correlated with a shift from migratory to sessile phases.

18.
Wilehm Roux Arch Dev Biol ; 191(1): 19-27, 1982 Jan.
Article in English | MEDLINE | ID: mdl-28305418

ABSTRACT

The subepidermal distribution of xanthophores and melanophores is investigated in embryos ofTriturus alpestris with a uniform (stage 28+) and a banded melanophore pattern (stage 35/36). In ultrathin head and trunk sections from stage 35/36 embryos which externally show longitudinal dorsal and lateral melanophore bands in the trunk and less compact continuations of the dorsal bands in the head, xanthophores were discovered in addition to melanophores. Melanophores contain melanosomes while xanthophores which are not externally visible, are recognized by their pterinosomes. Both chromatophore cell types are mutually exclusively distributed on the epidermal basement membrane (bm). Mesenchymal cells seemed not to be able to replace them, except on the bm of the corneal epithelium where there were only mesenchymal cells. In head and trunk sections from stage 28+ embryos which externally show a distribution of uniformly scattered melanophores on the dorsolateral halves, melanophores were found on the dorsolateral neural crest migration route. No epidermal bm was present and xanthophores were undetectable. In ventrolateral and ventral portions of embryos of both stages no chromatophores occurred. This investigation defines the histological localization of melanophores and xanthophores in embryos with a typical uniform and banded melanophore arrangement; a subsequent study analyzes when xanthophores appear and how they arrange with melanophores in alternating zones.

SELECTION OF CITATIONS
SEARCH DETAIL
...