Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PDA J Pharm Sci Technol ; 73(5): 443-458, 2019.
Article in English | MEDLINE | ID: mdl-31004039

ABSTRACT

In the vapor-phase hydrogen peroxide (VPHP)-sanitized environment, VPHP uptake by product-contacting components could eventually lead to undesired oxidation of biological drug products. Silicone tubing and primary packaging materials are prominent examples of such product-contacting surfaces that are typically processed/sterilized prior to use. This study investigated the VPHP-uptake tendency of these components and how their respective processing/sterilization methods affect the uptake behaviors. Silicone tubing that was sterilized via autoclave or gamma irradiation exhibited different VPHP uptake patterns-decreased uptake rates post autoclaving vs. increased uptake rates post gamma irradiation. The reduced uptake tendency of autoclaved tubing is maintained for 14 days after sterilization, whereas the uptake tendency of irradiated tubing was mostly reversed to normal levels 1 month after irradiation. Empty glass vials adsorbed hydrogen peroxide via the diffusion of VPHP into the vial with high vial-to-vial variability. Vial pretreatment (i.e., depyrogenation) and surface hydrophilicity/hydrophobicity impacted the uptake tendency. Stoppers and empty syringes also adsorbed hydrogen peroxide but at a relatively low level. The uptake behavior of these components appeared to correlate with water levels at the surface (i.e., hydrophilicity). This study provides process development scientists and engineers an in-depth understanding of the VPHP uptake by critical product-contacting surfaces so that they can mitigate the impact on drug product quality.LAY ABSTRACT: This study investigated vapor-phase hydrogen peroxide (VPHP) absorption by biopharmaceutical drug products via VPHP uptake by critical product-contacting components during the aseptic manufacturing process with a focus on various pretreatments and processing of these components. Sterilization of silicone tubing by gamma irradiation or autoclaving resulted in different VPHP uptake profiles with different effect durations. Primary packaging components, such as vials, syringes, and stoppers, also showed different levels of VPHP uptake with surface hydrophilicity/hydrophobicity playing a critical role. These outcomes suggested that VPHP uptake is a complex phenomenon and should be carefully considered to minimize its impact on product quality. The approach and outcome of this study can benefit scientists and engineers who develop biological product manufacturing processes by providing an in-depth understanding of drug product process risks.


Subject(s)
Biological Products/chemistry , Drug Packaging , Hydrogen Peroxide/chemistry , Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Silicones/chemistry , Sterilization/methods , Syringes , Technology, Pharmaceutical/methods , Water/chemistry
2.
PDA J Pharm Sci Technol ; 73(3): 285-291, 2019.
Article in English | MEDLINE | ID: mdl-30651338

ABSTRACT

During the manufacture of a monoclonal antibody drug product, which was aseptically filled within a vapor phase hydrogen peroxide-sanitized isolator, samples were taken to investigate the hydrogen peroxide uptake behaviors. Surprisingly, the samples had no detectable hydrogen peroxide (most results below the limit of detection). This finding was later attributed to hydrogen peroxide decomposition after the samples were stored frozen at -20°C for two weeks before testing. This case study highlights the criticality of storage conditions for hydrogen peroxide-containing samples and summarizes an investigation on hydrogen peroxide stability in water and in three monoclonal antibody solutions having a wide protein concentration range (30-200 mg/mL). Samples were stored at three temperatures (-70°C, -20°C, or 2-8°C) for up to 28 days to assess the impact of protein concentration and storage temperature on hydrogen peroxide decomposition rates. Hydrogen peroxide degraded slightly more rapidly with increasing protein concentration independent of storage condition. When stored at -20°C, hydrogen peroxide was least stable and degraded faster than when stored at 2-8°C. Hydrogen peroxide was most stable when the samples were stored at -70°C. Overall, this case study brings the hydrogen peroxide stability issue to the attention of process development scientists and engineers and offers a valuable lesson learned during process development.LAY ABSTRACT: The use of vapor phase hydrogen peroxide as a sanitizing agent for isolator and cleanroom decontamination has become common in recent years. Because of the potential impact of residual hydrogen peroxide on biopharmaceutical product quality, hydrogen peroxide uptake behaviors and mechanisms during the manufacturing process within these barriers need to be evaluated and understood. Samples taken from various small-scale and manufacturing-scale hydrogen peroxide uptake studies are often stored frozen before testing. This case study reports an important and interesting finding about hydrogen peroxide stability in samples collected for hydrogen peroxide uptake investigation, and it demonstrates the relationship between hydrogen peroxide stability and storage temperature, storage duration, and monoclonal antibody concentration. The approach and outcome of this study are expected to benefit scientists and engineers who develop biologic product manufacturing processes by providing a better understanding of drug product process challenges and appropriate sample storage.


Subject(s)
Antibodies, Monoclonal , Drug Compounding , Drug Storage/standards , Freezing , Hydrogen Peroxide/analysis , Sterilization/methods , Antibodies, Monoclonal/chemistry , Drug Compounding/methods , Drug Compounding/standards , Environment, Controlled
3.
PDA J Pharm Sci Technol ; 72(4): 348-366, 2018.
Article in English | MEDLINE | ID: mdl-29545321

ABSTRACT

A monoclonal antibody drug product manufacturing process was transferred to a different production site, where aseptic filling took place within an isolator that was decontaminated (sanitized) using vapor phase hydrogen peroxide (VPHP). A quality-by-design approach was applied for study design to understand the impact of VPHP uptake on drug product quality. Both small-scale and manufacturing-scale studies were performed to evaluate the sensitivity of the monoclonal antibody to hydrogen peroxide (H2O2) and characterize VPHP uptake mechanisms in the filling process. The acceptable H2O2 uptake level was determined to be 100 ng/mL for the antibody in the H2O2 spiking study; protein oxidation was observed above this threshold. The most prominent sources of VPHP uptake were identified to be the silicone tubing assembly (associated with the peristaltic pumps) and open, filled vials. Silicone tubing, an effective depot to H2O2, absorbs VPHP during different stages of the filling process and transmits H2O2 into the drug product solution during filling interruptions. A small-scale isolator model, established to simulate manufacturing-scale conditions, was a useful tool in understanding H2O2 uptake in relation to tubing dimensions and VPHP concentration in the isolator air (or atmosphere). Although the tubing assembly had absorbed a substantial amount of VPHP during the decontamination phase, the majority of H2O2 could be removed during tubing cleaning and sterilization in the subsequent isolator aeration phase, demonstrating that H2O2 in the final drug product solution is primarily taken up from residual VPHP in the isolator during filling. Picarro sensor monitoring demonstrated that the validated VPHP aeration process generates reproducible residual VPHP profiles in isolator air, allowing small-scale studies to provide relevant recommendations on tubing size and interruption time limits for commercial manufacturing. The recommended process parameters were demonstrated to be acceptable and rendered no product quality impact in six consecutive manufacturing batches in the process validation campaign. Overall, this case study provides process development scientists and engineers an in-depth understanding of the VPHP process and a science-based approach to mitigating drug product quality impact.LAY ABSTRACT: While the use of vapor phase hydrogen peroxide as a sanitizing agent for isolator and cleanroom decontamination has gained popularity in recent years, its impact on product quality during aseptic manufacturing of biopharmaceutical drug products is yet to be fully understood. With this scope in mind, this case study offers a detailed account of defining process parameters and developing their operating ranges to ensure that the impact to product quality is minimized. Both small-scale and manufacturing-scale studies were performed to assess the sensitivity of a monoclonal antibody to hydrogen peroxide, to characterize hydrogen peroxide uptake sources and mechanisms, and to eventually define process parameters and their ranges critical for minimizing product quality impact. The approach and outcome of this study is expected to benefit scientists and engineers who develop biologic product manufacturing processes by providing a better understanding of drug product process challenges.


Subject(s)
Antibodies, Monoclonal/chemistry , Decontamination/methods , Hydrogen Peroxide/chemistry , Technology, Pharmaceutical/methods , Anti-Infective Agents, Local/chemistry , Drug Compounding/methods , Gases/chemistry , Pharmaceutical Solutions , Silicones/chemistry , Sterilization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...