Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(12): 6890-6902, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35748861

ABSTRACT

Ribonucleotides can be incorporated into DNA during replication by the replicative DNA polymerases. These aberrant DNA subunits are efficiently recognized and removed by Ribonucleotide Excision Repair, which is initiated by the heterotrimeric enzyme RNase H2. While RNase H2 is essential in higher eukaryotes, the yeast Saccharomyces cerevisiae can survive without RNase H2 enzyme, although the genome undergoes mutation, recombination and other genome instability events at an increased rate. Although RNase H2 can be considered as a protector of the genome from the deleterious events that can ensue from recognition and removal of embedded ribonucleotides, under conditions of high ribonucleotide incorporation and retention in the genome in a RNase H2-negative strain, sudden introduction of active RNase H2 causes massive DNA breaks and genome instability in a condition which we term 'ribodysgenesis'. The DNA breaks and genome instability arise solely from RNase H2 cleavage directed to the ribonucleotide-containing genome. Survivors of ribodysgenesis have massive loss of heterozygosity events stemming from recombinogenic lesions on the ribonucleotide-containing DNA, with increases of over 1000X from wild-type. DNA breaks are produced over one to two divisions and subsequently cells adapt to RNase H2 and ribonucleotides in the genome and grow with normal levels of genome instability.


Subject(s)
Ribonucleases , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Ribonucleases/genetics , Ribonucleotides/genetics , Genomic Instability/genetics , DNA
2.
Methods Mol Biol ; 745: 3-13, 2011.
Article in English | MEDLINE | ID: mdl-21660685

ABSTRACT

Spontaneous mitotic recombination occurs in response to DNA damage incurred during DNA replication or from lesions that do not block replication but leave recombinogenic substrates such as single-stranded DNA gaps. Other types of damages result in general genome instability such as chromosome loss, chromosome fragmentation, and chromosome rearrangements. The genome is kept intact through recombination, repair, replication, checkpoints, and chromosome organization functions. Therefore when these pathways malfunction, genomic instabilities occur. Here we outline some general strategies to monitor a subset of the genomic instabilities: spontaneous mitotic recombination and chromosome loss, in both haploid and diploid cells. The assays, while not inclusive of all genome instability assays, give a broad assessment of general genome damage or inability to repair damage in various genetic backgrounds.


Subject(s)
Genomic Instability/genetics , Mitosis/genetics , Recombination, Genetic/genetics , Yeasts/genetics , Diploidy , Haploidy , Yeasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...