Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Phys ; 14: 3, 2014.
Article in English | MEDLINE | ID: mdl-25002909

ABSTRACT

BACKGROUND: Tissue dielectric properties are specific to physiological changes and consequently have been pursued as imaging biomarkers of cancer and other pathological disorders. However, a recent study (Phys Med Biol 52:2637-2656, 2007; Phys Med Biol 52:6093-6115, 2007), which utilized open-ended dielectric probing techniques and a previously established sensing volume, reported that the dielectric property contrast may only be 10% or less between breast cancer and normal fibroglandular tissue whereas earlier data suggested ratios of 4:1 and higher may exist. Questions about the sensing volume of this probe relative to the amount of tissue interrogated raise the distinct possibility that the conclusions drawn from that study may have been over interpreted. METHODS: We performed open-ended dielectric probe measurements in two-layer compositions consisting of a background liquid and a planar piece of Teflon that was translated to predetermined distances away from the probe tip to assess the degree to which the probe produced property estimates representative of the compositional averages of the dielectric properties of the two materials resident within a small sensing volume around the tip of the probe. RESULTS: When Teflon was in contact with the probe, the measured properties were essentially those of pure Teflon whereas the properties were nearly identical to those of the intervening liquid when the Teflon was located more than 2 mm from the probe tip. However, when the Teflon was moved closer to the probe tip, the dielectric property measurements were not linearly related to the compositional fraction of the two materials, but reflected nearly 50% of those of the intervening liquid at separation distances as small as 0.2 mm, and approximately 90% of the liquid when the Teflon was located 0.5 mm from the probe tip. CONCLUSION: These results suggest that the measurement methods reported in the most recent breast tissue dielectric property study are not likely to return the compositional averages of the breast tissue specimens evaluated, and thus, the conclusions reached about the expected dielectric property contrast in breast cancer from this specimen study may not be correct.

2.
Med Phys ; 40(10): 103101, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24089930

ABSTRACT

PURPOSE: Breast magnetic resonance imaging is highly sensitive but not very specific for the detection of breast cancer. Opportunities exist to supplement the image acquisition with a more specific modality provided the technical challenges of meeting space limitations inside the bore, restricted breast access, and electromagnetic compatibility requirements can be overcome. Magnetic resonance (MR) and microwave tomography (MT) are complementary and synergistic because the high resolution of MR is used to encode spatial priors on breast geometry and internal parenchymal features that have distinct electrical properties (i.e., fat vs fibroglandular tissue) for microwave tomography. METHODS: The authors have overcome integration challenges associated with combining MT with MR to produce a new coregistered, multimodality breast imaging platform--magnetic resonance microwave tomography, including: substantial illumination tank size reduction specific to the confined MR bore diameter, minimization of metal content and composition, reduction of metal artifacts in the MR images, and suppression of unwanted MT multipath signals. RESULTS: MR SNR exceeding 40 dB can be obtained. Proper filtering of MR signals reduces MT data degradation allowing MT SNR of 20 dB to be obtained, which is sufficient for image reconstruction. When MR spatial priors are incorporated into the recovery of MT property estimates, the errors between the recovered versus actual dielectric properties approach 5%. CONCLUSIONS: The phantom and human subject exams presented here are the first demonstration of combining MT with MR to improve the accuracy of the reconstructed MT images.


Subject(s)
Breast , Magnetic Resonance Imaging/methods , Microwaves , Systems Integration , Tomography/methods , Adult , Artifacts , Female , Humans , Phantoms, Imaging
3.
Breast Cancer Res ; 15(2): R35, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23621959

ABSTRACT

INTRODUCTION: Microwave tomography recovers images of tissue dielectric properties, which appear to be specific for breast cancer, with low-cost technology that does not present an exposure risk, suggesting the modality may be a good candidate for monitoring neoadjuvant chemotherapy. METHODS: Eight patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer were imaged longitudinally five to eight times during the course of treatment. At the start of therapy, regions of interest (ROIs) were identified from contrast-enhanced magnetic resonance imaging studies. During subsequent microwave examinations, subjects were positioned with their breasts pendant in a coupling fluid and surrounded by an immersed antenna array. Microwave property values were extracted from the ROIs through an automated procedure and statistical analyses were performed to assess short term (30 days) and longer term (four to six months) dielectric property changes. RESULTS: Two patient cases (one complete and one partial response) are presented in detail and demonstrate changes in microwave properties commensurate with the degree of treatment response observed pathologically. Normalized mean conductivity in ROIs from patients with complete pathological responses was significantly different from that of partial responders (P value = 0.004). In addition, the normalized conductivity measure also correlated well with complete pathological response at 30 days (P value = 0.002). CONCLUSIONS: These preliminary findings suggest that both early and late conductivity property changes correlate well with overall treatment response to neoadjuvant therapy in locally advanced breast cancer. This result is consistent with earlier clinical outcomes that lesion conductivity is specific to differentiating breast cancer from benign lesions and normal tissue.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/secondary , Carcinoma, Lobular/secondary , Microwaves , Neoadjuvant Therapy , Breast Neoplasms/drug therapy , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Lobular/drug therapy , Chemotherapy, Adjuvant , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Neoplasm Invasiveness , Neoplasm Staging , Pilot Projects , Prognosis
4.
Int J Biomed Imaging ; 2012: 697253, 2012.
Article in English | MEDLINE | ID: mdl-22566992

ABSTRACT

Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations.

5.
Article in English | MEDLINE | ID: mdl-22255641

ABSTRACT

Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2D techniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three-dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH.


Subject(s)
Algorithms , Breast Neoplasms/diagnosis , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microwaves , Female , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
6.
Article in English | MEDLINE | ID: mdl-22255643

ABSTRACT

Microwave Tomography (MT) can determine the permittivity and conductivity of a volume of interest; it has been shown that a contrast exists between these electrical properties in healthy and malignant tissues, and MT can be used to discern the dielectric contrast image of these tissues by recovering their electrical property values. Simulation and phantom experiments of objects with known spatial locations have shown that using boundary information derived from internal structures in the imaged volume greatly increases the accuracy of the recovered property values. In practice this spatial information, which will be used for reconstructing the tissue's electrical property images, must be determined with high enough resolution to segment boundary regions and internal structures of interest. This experiment investigates the use of Magnetic Resonant Imaging (MRI) in obtaining the desired spatial information used in mesh generation for image reconstruction and provides microwave image results comparing electrical properties recovered with and without this prior spatial information.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Microwaves , Pattern Recognition, Automated/methods , Subtraction Technique , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...