Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Cell Mater ; 41: 517-530, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33999403

ABSTRACT

Tungsten is incorporated in many industrial goods, military applications and medical devices due to its ability to impart flexibility, strength and conductance to materials. Emerging evidence has questioned the safety of tungsten exposure as studies have demonstrated it can promote tumour formation, induce pulmonary disease and alter immune function. Although tungsten is excreted from the body it can accumulate in certain organs such as the brain, colon, liver, kidneys, spleen and bones, where most of the bioaccumulation occurs. Whether prolonged tungsten exposure leads to accumulation in other tissues is unknown. The present study demonstrated that mice exposed to 15 ppm sodium tungstate for 4 weeks in their drinking water showed comparable accumulation in both the bony vertebrae and intervertebral discs (IVDs). Lumbar IVD height was significantly reduced in tungsten-exposed mice and accompanied by decreased proteoglycan content and increased fibrosis. In addition to catabolic enzymes, tungsten also increased the expression of the inflammatory cytokines IL-1ß and tumour necrosis factor (TNF)-α as well as the neurotrophic factors nerve growth factor (NGF) and brain-derived nerve factor (BDNF) in IVD cells. Tungsten significantly increased the presence of nociceptive neurons at the endplates of IVDs as observed by the expression of calcitonin gene-related peptide (CGRP) and anti-protein gene product 9.5 (PGP9.5) in endplate vessels. The present study provided evidence that tungsten may enhance disc degeneration and fibrosis as well as increase the expression of markers for pain. Therefore, tungsten toxicity may play a role in disc degeneration disease.


Subject(s)
Inflammation/metabolism , Intervertebral Disc Degeneration/chemically induced , Intervertebral Disc/drug effects , Pain/metabolism , Tungsten/adverse effects , Up-Regulation/drug effects , Animals , Biomarkers/metabolism , Cytokines/metabolism , Fibrosis/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Male , Mice , Mice, Inbred C57BL
2.
Eur Cell Mater ; 41: 471-484, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33945627

ABSTRACT

Injectable therapies for intervertebral disc (IVD) repair are gaining much interest. Recently, a chitosan (CH)-based injectable scaffold has been developed that has similar mechanical properties to human nucleus pulposus (NP) and provides a suitable environment for encapsulated NP cell survival and proteoglycan production. The hypothesis of the study was that the biological response of the encapsulated cells can be further increased by adding gelatine and Link N (LN, a naturally occurring peptide present in cartilage and IVD extracellular matrix), known to increase cell adhesion and proteoglycan production, respectively. The effect of gelatine on the mechanical properties of a CH hydrogel was evaluated through rheological and compressive mechanical tests. Production of proteoglycan [assessed as glycosaminoglycan (GAG)] by encapsulated NP cells was determined in the presence or absence of gelatine in normal or degenerative medium supplemented with LN. Normal and degenerative media replicate the healthy and degenerative disc environment, respectively. Gelatine slightly reduced the gelation rate of CH hydrogel but improved its final mechanical properties in compression. LN had a minimal effect in normal medium but induced significantly more GAG production in degenerative medium (p < 0.001, 4.7-fold superior to the control), reaching similar results to transforming growth factor (TGF)-ß (used as a positive control). GAG production was further increased in CH-gelatine hydrogels, confirming an additive effect of LN and gelatine in a degenerative environment. The results supported the concept that CH-gelatine hydrogels supplemented with LN can help restore the function of the NP during the early stages of IVD degeneration.


Subject(s)
Chitosan/pharmacology , Extracellular Matrix/drug effects , Gelatin/pharmacology , Hydrogels/pharmacology , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc/drug effects , Animals , Cartilage/drug effects , Cartilage/metabolism , Cattle , Cell Survival/drug effects , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Mesenchymal Stem Cells/drug effects , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Tissue Engineering/methods
3.
Eur Cell Mater ; 39: 65-76, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31939630

ABSTRACT

Osteoarthritis (OA) is a disease of diarthrodial joints associated with extracellular matrix proteolytic degradation under inflammatory conditions, pain and disability. Currently, there is no therapy to prevent, reverse or modulate the disease course. The present study aimed at evaluating the regenerative potential of Link N (LN) in human OA cartilage in an inflammatory milieu and determining if LN could affect pain-related behaviour in a knee OA mouse injury model. Osteo-chondro OA explants and OA chondrocytes were treated with LN in the presence of interleukin-1ß (IL-1ß) to simulate an osteoarthritic environment. Quantitative von Frey polymerase chain reaction and Western blotting were performed to determine the effect of LN on matrix protein synthesis, catabolic enzymes, cytokines and nerve growth factor expression. Partial medial meniscectomy (PMM) was performed on the knee of C57BL/6 mice and, 12 weeks post-surgery, mice were given a 5 µg intra-articular injection of LN or phosphate-buffered saline. A von Frey test was conducted over 24 h to measure the mechanical allodynia in the hind paw. LN modulated proteoglycan and collagen synthesis in human OA cartilage through inhibition of IL-1ß-induced biological effects. LN also supressed IL-1ß-induced upregulation of cartilage-degrading enzymes and inflammatory molecules in OA chondrocytes. Upon investigation of the canonical signalling pathways IL-1ß and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), LN resulted to significantly inhibit NF-κB activation in a dose-dependent manner. In addition, LN suppressed mechanical allodynia in an OA PMM mouse model. Results supported the concept that LN administration could provide therapeutic potential in OA.


Subject(s)
Cartilage, Articular/pathology , Interleukin-1beta/pharmacology , Osteoarthritis/pathology , Peptides/pharmacology , Aged , Animals , Behavior, Animal/drug effects , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Collagen Type II/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Glycosaminoglycans/metabolism , Humans , Hydroxyproline/metabolism , Knee Joint/drug effects , Knee Joint/pathology , Mice, Inbred C57BL , Middle Aged , Pain/pathology , Signal Transduction/drug effects
4.
Eur Cell Mater ; 37: 347-359, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31044415

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease characterised by a progressive degradation of articular cartilage and underlaying bone and is associated with pain and disability. Currently, there is no medical treatment to reverse or even retard OA. Based on our previous reports, where we establish the repair potential of short Link N (sLN) in the intervertebral disc, a cartilage-like tissue, we hypothesise that sLN may hold similar promises in the repair of articular cartilage. This study aimed to determine if sLN, could prevent OA disease progression. Skeletally mature New Zealand white rabbits underwent unilateral anterior cruciate ligament transection (ACLT) of their left femorotibial joints to induce joint degeneration typical of OA. Beginning 3 weeks post-operatively, and every three weeks thereafter for 12 weeks, either saline (1 mL) or sLN (100 µg in 1 mL saline) was injected intraarticularly into the operated knee. Six additional rabbits underwent sham surgery but without ACLT or post-operative injections. The effects on gross joint morphology and cartilage histologic changes were evaluated. In the Saline group, prominent erosion of articular cartilage occurred in both femoral condyle compartments and the lateral compartment of the tibial plateau while, sLN treatment reduced the severity of the cartilage damage in these compartments of the knee showing erosion. Furthermore, statistically significant differences were detected between the joint OA score of the saline and sLN treated groups (p = 0.0118). Therefore, periodic intraarticular injection of sLN is a promising nonsurgical treatment for preventing or retarding OA progression, by reducing cartilage degradation.


Subject(s)
Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Proteoglycans/metabolism , Proteoglycans/pharmacology , Animals , Anterior Cruciate Ligament/drug effects , Anterior Cruciate Ligament/metabolism , Anterior Cruciate Ligament Injuries/drug therapy , Anterior Cruciate Ligament Injuries/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Disease Models, Animal , Disease Progression , Femur/drug effects , Femur/metabolism , Injections, Intra-Articular/methods , Knee Joint/drug effects , Knee Joint/metabolism , Rabbits , Tibia/drug effects , Tibia/metabolism
5.
Eur Cell Mater ; 32: 137-51, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27452962

ABSTRACT

The cartilaginous endplates (CEPs) are thin layers of hyaline cartilage found adjacent to intervertebral discs (IVDs). In addition to providing structural support, CEPs regulate nutrient and metabolic exchange in the disc. In IVD pathogenesis, CEP undergoes degeneration and calcification, compromising nutrient availability and disc cell metabolism. The mechanism(s) underlying the biochemical changes of CEP in disc degeneration are currently unknown. Since calcification is often observed in later stages of IVD degeneration, we hypothesised that elevations in free calcium (Ca2+) impair CEP homeostasis. Indeed, our results demonstrated that the Ca2+ content was consistently higher in human CEP tissue with grade of disc degeneration. Increasing the levels of Ca2+ resulted in decreases in the secretion and accumulation of collagens type I, II and proteoglycan in cultured human CEP cells. Ca2+ exerted its effects on CEP matrix protein synthesis through activation of the extracellular calcium-sensing receptor (CaSR); however, aggrecan content was also affected independent of CaSR activation as increases in Ca2+ directly enhanced the activity of aggrecanases. Finally, supplementing Ca2+ in our IVD organ cultures was sufficient to induce degeneration and increase the mineralisation of CEP, and decrease the diffusion of glucose into the disc. Thus, any attempt to induce anabolic repair of the disc without addressing Ca2+ may be impaired, as the increased metabolic demand of IVD cells would be compromised by decreases in the permeability of the CEP.


Subject(s)
Calcium/metabolism , Cartilage/metabolism , Cartilage/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Receptors, Calcium-Sensing/metabolism , Aggrecans/metabolism , Animals , Calcinosis/metabolism , Calcinosis/pathology , Cattle , Chondrocytes/metabolism , Collagen/metabolism , Diffusion , Extracellular Matrix/metabolism , Gene Knockdown Techniques , Glucose/metabolism , Humans , Intervertebral Disc Degeneration/metabolism , Organ Culture Techniques , Proteoglycans/metabolism , RNA, Small Interfering/metabolism
6.
Open Orthop J ; 2: 115-20, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-19478935

ABSTRACT

Doxorubicin (DOX) is widely used in combination cocktails for treatment of childhood hematological cancers and solid tumors. A major factor limiting DOX usage is DOX-induced cardiotoxicity. However, it is not known whether protectants like dexrazoxane (DXR) and amifostine (AMF) can prevent DOX-mediated bone damage. The present study investigated whether administration of AMF alone or in combination with DXR would prevent any DOX-mediated bone damage. Male rat pups were treated with DOX, DXR, AMF, and their combinations. On neonate day 38, the bone mineral density (BMD), bone mineral content (BMC) and the micro-architecture of the lumbar vertebrae were analyzed. We have shown that when male rats are treated with DOX, DXR, DOX+DXR, AMF, DOX+AMF or DOX+DXR+AMF, there is a decrease in lumbar vertebral BMD (p<0.05). Furthermore, the relative bone volume (BV/TV) was decreased by DXR, DOX+DXR, and DOX+AMF treatments. Interestingly, DOX+AMF significantly increased BV/TV when compared to DXR treatment (p<0.04). The trabecular number (Tb.N) decreased with DXR and DOX+DXR and increased with DOX+AMF treatments. This information will be useful in designing better cancer combination therapies that do not lead to vertebrae deterioration.

7.
J Biomed Mater Res A ; 83(4): 1009-1023, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17584892

ABSTRACT

Hydroxyapatite (HA) and HA-alumina (HA/Al2O3) composites, with Al2O3 contents of 5, 10, 20, and 30%, were synthesized using a wet precipitation method and sintered at 900 and 1300 degrees C. We investigated the effect of sintering temperature and relative concentration of HA and Al2O3 on the chemical composition, surface morphology, and cytotoxicity of the composite powders. The XRD results show that in the 1300 degrees C composites, HA partially decomposed into CaO which combined with Al2O3 to form different calcium aluminates. For the 900 degrees C composites the CaO phase was not detected, though a Ca/P ratio larger than 1.67 measured by XPS suggests that CaO was present in trace amounts. SEM-EDX analysis indicated that the HA microstructure was affected by the sintering temperature, and this HA is present on the surface of Al2O3 particles. The cytotoxicity of the composites was assessed indirectly using the MTT assay. The short-term effect of leachables was quantified by exposing a L929 mouse fibroblast cell line to the degradation products released by the composites after immersion in the cell culture medium. Degradation products were less toxic to L-929 at lower extract concentrations (10, 50%) than at 100% concentration. Cell viability was also influenced by leachable size.


Subject(s)
Aluminum Oxide/chemistry , Durapatite/chemistry , Aluminum Oxide/pharmacology , Animals , Cell Line , Durapatite/pharmacology , Mice , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...