Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 361: 109964, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35513013

ABSTRACT

Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.


Subject(s)
Nanostructures , Nanotubes, Carbon , Neoplasms , Bacteria , Humans , Nanostructures/chemistry , Nanostructures/therapeutic use , Nanotubes, Carbon/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oligonucleotides , Precision Medicine
2.
Nanomaterials (Basel) ; 12(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35407220

ABSTRACT

Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.

3.
Bioelectrochemistry ; 145: 108083, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35150998

ABSTRACT

Electrospun nanofibers (ESNF) offer us a chance to obtain nanoscale building blocks by adding the desired modification agent to the polymer solution. Here, nanocomposite-based electrospun nanofibers designed for the recognition surface of the developed immunosensor were used for the first time in the determination of CD36. Firstly, graphene oxide (GO) was synthesized from graphite powder (GR), and GO sheets were silanized with different amounts of (3-Aminopropyl)triethoxysilane (APTES). Synthesized GO-APTES nanocomposite and polystyrene (PS) solution were mixed in different ratios to obtain uniform nanofibers without beads. As a result of the amino groups obtained on the surface of the nanofibers, the surface was made ready for covalent immobilization of the Anti-CD36 antibody. The nanofibers obtained under the optimum conditions determined were deposited on the surface of the screen-printed carbon electrode (SPCE) by the electrospinning technique. Then, Anti-CD36 was immobilized on the PS/GO-APTES modified SPCE through covalent bonding and used to prepare the biofunctional surface for the usage of bioelectrochemistry of CD36. The optimum Anti-CD36 concentration decided to be used in experiments was determined as 10 µg/mL. The linear detection range of CD36 was from 0.5 to 20 ng/mL, and the detection limit was 0.999 ng/mL. Finally, the developed PS/GO-APTES/Anti-CD36 immunosensor was used for the determination of CD36 in artificial blood serum without any interference effect.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Graphite , Nanofibers , Biosensing Techniques/methods , Carbon , Humans , Immunoassay , Polystyrenes
4.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34835766

ABSTRACT

Over various scientific fields in biochemistry, amino acids have been highlighted in research works. Protein, peptide- and amino acid-based drug delivery systems have proficiently transformed nanotechnology via immense flexibility in their features for attaching various drug molecules and biodegradable polymers. In this regard, novel nanostructures including carbon nanotubes, electrospun carbon nanofibers, gold nanoislands, and metal-based nanoparticles have been introduced as nanosensors for accurate detection of these organic compounds. These nanostructures can bind the biological receptor to the sensor surface and increase the surface area of the working electrode, significantly enhancing the biosensor performance. Interestingly, protein-based nanocarriers have also emerged as useful drug and gene delivery platforms. This is important since, despite recent advancements, there are still biological barriers and other obstacles limiting gene and drug delivery efficacy. Currently available strategies for gene therapy are not cost-effective, and they do not deliver the genetic cargo effectively to target sites. With rapid advancements in nanotechnology, novel gene delivery systems are introduced as nonviral vectors such as protein, peptide, and amino acid-based nanostructures. These nano-based delivery platforms can be tailored into functional transformation using proteins and peptides ligands based nanocarriers, usually overexpressed in the specified diseases. The purpose of this review is to shed light on traditional and nanotechnology-based methods to detect amino acids, peptides, and proteins. Furthermore, new insights into the potential of amino protein-based nanoassemblies for targeted drug delivery or gene transfer are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...