Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 493, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833626

ABSTRACT

BACKGROUND: Reproductive stage drought stress (RDS) is a major global threat to rice production. Due to climate change, water scarcity is becoming an increasingly common phenomenon in major rice-growing areas worldwide. Understanding RDS mechanisms will allow candidate gene identification to generate novel rice genotypes tolerant to RDS. RESULTS: To generate novel rice genotypes that can sustain yield under RDS, we performed gamma-irradiation mediated mutation breeding in the drought stress susceptible mega rice variety, MTU1010. One of the mutant MM11 (MTU1010 derived mutant11) shows consistently increased performance in yield-related traits under field conditions consecutively for four generations. In addition, compared to MTU1010, the yield of MM11 is sustained in prolonged drought imposed during the reproductive stage under field and in pot culture conditions. A comparative emerged panicle transcriptome analysis of the MTU1010 and MM11 suggested metabolic adjustment, enhanced photosynthetic ability, and hormone interplay in regulating yield under drought responses during emerged panicle development. Regulatory network analysis revealed few putative significant transcription factor (TF)-target interactions involved in integrated signalling between panicle development, yield and drought stress. CONCLUSIONS: A gamma-irradiate rice mutant MM11 was identified by mutation breeding, and it showed higher potential to sustain yield under reproductive stage drought stress in field and pot culture conditions. Further, a comparative panicle transcriptome revealed significant biological processes and molecular regulators involved in emerged panicle development, yield and drought stress integration. The study extends our understanding of the physiological mechanisms and candidate genes involved in sustaining yield under drought stress.


Subject(s)
Oryza , Transcriptome , Oryza/metabolism , Droughts , Plant Breeding , Genes, Regulator , Stress, Physiological/genetics
2.
Mol Biol Rep ; 50(2): 1499-1515, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36507967

ABSTRACT

BACKGROUND: Rice crop is damaged extremely by abiotic stress world-wide. The best approach to enhance drought tolerance in rice varieties is to identify and introgress yield QTLs with major effects. The Association mapping approach helps in the identification of genomic regions governing physiological, yield and yield attributes under moisture and heat stress conditions in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. METHODS AND RESULTS: The association mapping panel of 110 rice germplasm lines exhibited significant variation for all the traits in both irrigated and moisture stress conditions. The extent of yield reduction ranged to 83% during rabi, 2018-19, 53% in rabi, 2019-20 and 68% in pooled analysis. The genotypes Badami, Badshabhog, Pankaj, Varalu, Vasundhara, Vivekdhan, Krishna and Minghui63 exhibited drought tolerance with least yield penalty under moisture stress conditions. The genotypes Konark, MTU3626, NLR33671, PR118 and Triguna exhibited minimal reduction in heat stress tolerance traits. Association mapping of germplasm using 37808 SNP markers detected a total of 10 major MTA (Marker-trait association) clusters distributed on chromosomes 1, 3, 4 and 11 through mixed linear model (MLM) governing multiple traits from individual data analysis which are consistent across the years and situations. The pooled data generated a total of five MTA clusters located on chromosome 6. In addition, several novel unique MTAs were also identified. Heat stress analysis generated a total of 23 MTAs distributed on chromosomes 1, 5, 6 and 11. Candidate gene analysis detected a total of 53 and 38 genes under individual and pooled data analysis for various yield and yield attributes under control and moisture stress conditions, respectively and a total of 11 candidate genes in heat stress Conditions. CONCLUSION: The major and novel MTAs identified in the present investigation for various drought and heat tolerant traits can be utilized for breeding climate-resilient rice varieties. The candidate genes predicted for key MTAs are of great value to deploy into the rice breeding after functional characterization.


Subject(s)
Oryza , Chromosome Mapping/methods , Oryza/genetics , Plant Breeding , Heat-Shock Response/genetics , Phenotype , Genomics
3.
Mol Biol Rep ; 49(8): 7649-7663, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35612779

ABSTRACT

BACKGROUND: With the increase in population and economies of developing countries in Asia and Africa, the research towards securing future food demands is an imminent need. Among japonica and indica genotypes, indica rice varieties are largely cultivated across the globe. However, our present understanding of yield-contributing gene information stems mainly from japonica and studies on the yield potential of indica genotypes are limited. METHODS AND RESULTS: In the present study, yield contributing orthologous genes previously characterized from japonica varieties were identified in the indica genome and analysed with binGO tool for GO biological processes categorization. Transcription factor binding site enrichment analysis in the promoters of yield-related genes of indica was performed with MEME-AME tool that revealed putative common TF regulators are enriched in flower development, two-component signalling and water deprivation biological processes. Gene regulatory networks revealed important TF-target interactions that might govern yield-related traits. Some of the identified candidate genes were validated by qRT-PCR analysis for their expression and association with yield-related traits among 16 widely cultivated popular indica genotypes. Further, SNP-metabolite-trait association analysis was performed using high-yielding indica variety Rasi. This resulted in the identification of putative SNP variations in TF regulators and targeted yield genes significantly linked with metabolite accumulation. CONCLUSIONS: The study suggests some of the high yielding indica genotypes such as Ravi003, Rasi and Kavya could be used as potential donors in breeding programs based on yield gene expression analysis and SNP-metabolites associations.


Subject(s)
Oryza , Gene Regulatory Networks/genetics , Genotype , Oryza/genetics , Phenotype , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...