Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37896198

ABSTRACT

The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical-chemical properties, compatibility and drug release performance. Four W/O emulsions containing vancomycin hydrochloride (VAN), an encapsulating PLGA polymer and Poloxamer® 407, chitosan and/or sorbitan monooleate as stabilisers were spray-dried using an ultrasonic atomising nozzle. The microparticles obtained were micron-sized, with a volume mean diameter between 43.2 ± 0.3 and 64.0 ± 12.6 µm, and spherical with a mostly smooth, non-porous surface and with high drug loading (between 14.5 ± 0.6 and 17.1 ± 1.9% w/w). All formulations showed a prolonged and biphasic VAN release profile, with diffusion being the primary release mechanism. Microparticles prepared from the emulsions with Poloxamer® 407 and sorbitan monooleate released VAN rapidly and completely within one day. The release of VAN from microparticles prepared from the emulsion without additives or with chitosan in the inner aqueous phase was significantly decreased; after four days, a cumulative release of 65% and 61%, respectively, was achieved. Microparticles with encapsulated chitosan had the largest mean particle diameter and the slowest release of VAN.

2.
Int J Pharm ; 631: 122471, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36509222

ABSTRACT

Drug-loaded emulsions for spray drying should be optimised for their rheological behaviour and stability under operating conditions, as this is essential for achieving the desired physicochemical properties of the final dry product. Our aim was therefore to investigate the structure and stability of a water-in-oil (W/O) emulsion containing vancomycin hydrochloride as the active ingredient in the aqueous phase, poly(d,l-lactide-co-glycolide) as the structural polymer in the dichloromethane-based organic phase, and various stabilisers using low-field nuclear magnetic resonance (LF NMR) and rheological characterisation. Four emulsions were tested, namely-one without stabiliser, one with Poloxamer® 407, one with chitosan and Span™ 80 and one with chitosan only. The theoretical interpretation of the rheological data allowed the determination of the velocity and the shear rate/stress profiles inside the feed path of the W/O emulsion, aspects that are critical for the industrial scale-up of the emulsion drying process. In addition, LF NMR demonstrated that shaking was sufficient to restore the original emulsion structure and that the droplet size of all emulsions was in the range of 1-10 µm, although the emulsion with chitosan had the narrowest droplet size distribution and the higher zero shear viscosity, which accounts for the increased long-term stability due to impeded droplets movement.


Subject(s)
Chitosan , Water , Water/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Emulsions/chemistry , Spray Drying , Magnetic Resonance Spectroscopy , Rheology , Particle Size
3.
Eur J Pharm Sci ; 141: 105115, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31654755

ABSTRACT

In this study, we present the development of spray-dried pectin/hypromellose microspheres as efficient melatonin carrier for targeted nasal delivery. Different pectin to hypromellose weight ratios in the spray-dried feed were employed (i.e. 1:0, 3:1, 1:1 and 1:3) in order to optimise microsphere physicochemical properties influencing overall powder behaviour prior, during and upon nasal delivery. All microspheres assured complete melatonin entrapment and increased dissolution rate in relation to pure melatonin powder. Among all combinations tested, combining pectin with hypromellose at 1:3 wt ratio resulted in the microspheres with the highest potential for melatonin nasal delivery as they assured highest swelling ability and most prominent mucoadhesive properties. Studies on deposition profile revealed adequate turbinate and olfactory deposition of microsphere/lactose monohydrate powder blend administered nasally using MIAT® device, complementing findings relevant for their therapeutic potential. In conclusion, developed microspheres bear the potential to ensure prolonged melatonin retention at the nasal mucosa, improved bioavailability and advanced therapeutic outcome.


Subject(s)
Hypromellose Derivatives , Melatonin , Microspheres , Nasal Mucosa/metabolism , Pectins , Adhesiveness , Administration, Intranasal , Drug Liberation , Hypromellose Derivatives/administration & dosage , Hypromellose Derivatives/chemistry , Melatonin/administration & dosage , Melatonin/chemistry , Models, Biological , Nasal Mucosa/chemistry , Pectins/administration & dosage , Pectins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...