Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Phys Eng ; 14(1): 99-110, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38357598

ABSTRACT

The selection of abrasive material and parameters of the Air-Abrasion device for a particular application is a crucial detail. However, there are no standard recommendations or manuals for choosing these details; the operator must depend on his experience and knowledge of the procedure to select the best possible material and set of parameters. This short review attempts to identify some of the effects that the selection of material and parameters could have on the performance of the Air-Abrasion procedure for a particular application. The material and parameter data are collected from various studies and categorized according to the most popular materials in use right now. These studies are then analyzed to arrive at some inferences on the performance of Air-Abrasion materials and parameters. This review arrives at a few conclusions on the effectiveness of a material and parameter set, and that there is potential for developments in the area of standardizing parameter selection; also, there is scope for further studies on Bio-Active Glass as an alternative to the materials currently used in Air-Abrasion.

2.
Comput Methods Programs Biomed ; 190: 105356, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32007840

ABSTRACT

BACKGROUND AND OBJECTIVE: Finite element based simulation has emerged as a powerful tool to analyse the tooth strength and its fracture characteristics. The aim of this study is to compare and evaluate the fracture resistance of immature teeth reinforcement with MTA, Biodentine and Bioaggregate as an apical plug and backfill material using Finite Element Method. METHODS: A 3D finite element analysis model was generated using a simulated immature maxillary central incisor. Seven different models were developed representing (Model 1): control group having an immature tooth model without any reinforcement material; (Model 2): Mineral trioxide aggregate (MTA) as apical plug 4 mm; (Model 3): Biodentine as apical plug 4 mm; (Model 4): Bioaggregate as apical plug 4 mm; (Model 5): MTA filled in the entire root canal 8.5 mm; (Model 6): Biodentine filled in the entire root canal 8.5 mm; (Model 7): Bioaggregate filled in the entire root canal 8.5 mm. A force of 100 N was applied at an angle of 130° to the palatal surface of the tooth. Stress distribution at cemento­enamel junction was measured using the Von Mises stress criteria. RESULTS: It was found that the 4 mm apical plug using MTA showed higher fracture resistance when compared to 8.5 mm backfill using MTA. When MTA was replaced as backfill material by Biodentine and Bioaggregate, the von mises stress increased by 64% and 94% respectively. CONCLUSIONS: It is not desirable to restore the entire root canal of an immature teeth using same material due to higher stress concentration at the cervical region. Considering the shorter setting time and improved handling characteristics, Biodentine can be preferred over the time­tested MTA as an apical plug.


Subject(s)
Aluminum Compounds , Calcium Compounds , Calcium Hydroxide , Finite Element Analysis , Hydroxyapatites , Oxides , Silicates , Drug Combinations , Humans , Imaging, Three-Dimensional , Incisor
SELECTION OF CITATIONS
SEARCH DETAIL
...