Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 35(4): 4385-4399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37018277

ABSTRACT

Many neural networks for graphs are based on the graph convolution (GC) operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, which tend to add complexity (and nonlinearity) to the model. Recently, however, a simplified GC operator, dubbed simple graph convolution (SGC), which aims to remove nonlinearities was proposed. Motivated by the good results reached by this simpler model, in this article we propose, analyze, and compare simple graph convolution operators of increasing complexity that rely on linear transformations or controlled nonlinearities, and that can be implemented in single-layer graph convolutional networks (GCNs). Their computational expressiveness is characterized as well. We show that the predictive performance of the proposed GC operators is competitive with the ones of other widely adopted models on the considered node classification benchmark datasets.

2.
IEEE Trans Med Imaging ; 35(11): 2476-2485, 2016 11.
Article in English | MEDLINE | ID: mdl-27323359

ABSTRACT

Magnetic Particle Imaging (MPI) is an emerging technology in the field of (pre)clinical imaging. The acquisition of a particle signal is realized along specific sampling trajectories covering a defined field of view (FOV). In a system matrix (SM) based reconstruction procedure, the commonly used acquisition path in MPI is a Lissajous trajectory. Such a trajectory features an inhomogeneous coverage of the FOV, i.e. the center region is sampled less dense than the regions towards the edges of the FOV. Conventionally, the respective SM acquisition and the subsequent reconstruction do not reflect this inhomogeneous coverage. Instead, they are performed on an equispaced grid. The objective of this work is to introduce a sampling grid that inherently features the aforementioned inhomogeneity by using node points of Lissajous trajectories. Paired with a tailored polynomial interpolation of the reconstructed MPI signal, the entire image can be recovered. It is the first time that such a trajectory related non-equispaced grid is used for image reconstruction on simulated and measured MPI data and it is shown that the number of sampling positions can be reduced, while the spatial resolution remains constant.


Subject(s)
Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Magnetite Nanoparticles/therapeutic use , Algorithms , Computer Simulation , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...