Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neural Circuits ; 16: 977642, 2022.
Article in English | MEDLINE | ID: mdl-36110920

ABSTRACT

Dysregulation of body weight maintenance and opioid dependence are often treated as independent disorders. Here, we assessed the effects of both acute and long-term administration of morphine with and without chemogenetic activation of agouti-related peptide (AGRP)-expressing neurons in the arcuate nucleus (ARCAGRP neurons) to elucidate whether morphine and neuronal activation affect feeding behavior and body weight. First, we characterized interactions of opioids and energy deficit in wild-type mice. We observed that opioid administration attenuated both fasting-induced refeeding and ghrelin-stimulated feeding. Moreover, antagonism of opioid receptors blocked fasting-induced refeeding behavior. Next, we interfaced chemogenetics with opioid dependence. For chemogenetic experiments of ARCAGRP neurons, we conducted a priori behavioral qualification and post-mortem FOS immunostaining verification of arcuate activation following ARCAGRP chemogenetic activation. We administered clozapine during short-term and long-term morphine administration paradigms to determine the effects of dependence on food intake and body weight. We found that morphine occluded feeding behavior characteristic of chemogenetic activation of ARCAGRP neurons. Notably, activation of ARCAGRP neurons attenuated opioid-induced weight loss but did not evoke weight gain during opioid dependence. Consistent with these findings, we observed that morphine administration did not block fasting-induced activation of the ARC. Together, these results highlight the strength of opioidergic effects on body weight maintenance and demonstrate the utility of ARCAGRP neuron manipulations as a lever to influence energy balance throughout the development of opioid dependence.


Subject(s)
Clozapine , Opioid-Related Disorders , Agouti-Related Protein/pharmacology , Analgesics, Opioid/pharmacology , Animals , Body Weight , Clozapine/pharmacology , Eating , Ghrelin/pharmacology , Mice , Morphine Derivatives/pharmacology , Neurons/physiology , Receptors, Opioid
2.
Elife ; 102021 05 27.
Article in English | MEDLINE | ID: mdl-34042586

ABSTRACT

Understanding how neuronal circuits control nociceptive processing will advance the search for novel analgesics. We use functional imaging to demonstrate that lateral hypothalamic parvalbumin-positive (LHPV) glutamatergic neurons respond to acute thermal stimuli and a persistent inflammatory irritant. Moreover, their chemogenetic modulation alters both pain-related behavioral adaptations and the unpleasantness of a noxious stimulus. In two models of persistent pain, optogenetic activation of LHPV neurons or their ventrolateral periaqueductal gray area (vlPAG) axonal projections attenuates nociception, and neuroanatomical tracing reveals that LHPV neurons preferentially target glutamatergic over GABAergic neurons in the vlPAG. By contrast, LHPV projections to the lateral habenula regulate aversion but not nociception. Finally, we find that LHPV activation evokes additive to synergistic antinociceptive interactions with morphine and restores morphine antinociception following the development of morphine tolerance. Our findings identify LHPV neurons as a lateral hypothalamic cell type involved in nociception and demonstrate their potential as a target for analgesia.


Subject(s)
Behavior, Animal , Hypothalamic Area, Lateral/physiopathology , Nociception , Pain/physiopathology , Pain/psychology , Analgesics, Opioid/therapeutic use , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Calcium Signaling , Disease Models, Animal , Drug Tolerance , Female , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/metabolism , Male , Mice, Inbred C57BL , Microscopy, Fluorescence , Morphine/pharmacology , Neural Pathways/metabolism , Neural Pathways/physiopathology , Neuroanatomical Tract-Tracing Techniques , Nociception/drug effects , Optogenetics , Pain/metabolism , Pain/prevention & control , Parvalbumins/genetics , Parvalbumins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...