Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(44): 28831-28842, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320519

ABSTRACT

High-entropy oxide (HEO) superconductors have been developed since very recently. Different superconductors can be produced in the form of a high-entropy compound, including REBa2Cu3O7-δ (REBCO). However, until now, mainly bulk samples (mostly in polycrystalline form) have been reported. In this work, the first CSD-grown high-entropy (HE) REBCO nanocomposite films were successfully synthesized. In particular, high-quality Gd0.2Dy0.2Y0.2Ho0.2Er0.2Ba2Cu3O7-δ nanocomposite films with 12 mol% BaHfO3 nanoparticles were grown on SrTiO3 substrates. The X-ray diffraction patterns show a near-perfect c-axis oriented grain growth. Both T c and 77 K J sf c, 91.9 K and 3.5 MA cm-2, respectively, are comparable with the values of the single-RE REBCO films. Moreover, at low temperatures, specifically at 30 K, the J c values are larger than those of the single-RE samples. A transmission electron microscopy (TEM) study, including energy-dispersive X-ray spectroscopy (EDXS) measurements, reveals that the different RE3+ ions are distributed homogeneously in the matrix without forming clusters. This distribution causes point-like pinning centres that explain the superior performances of these samples at low temperatures. Although still seen as a proof-of-concept for the feasibility of preparing such films, these results demonstrate that the HE REBCO films are a promising option for the future fabrication of high-performance coated conductors. In the investigated B-T range, however, their J c values are still lower than those of other, medium-entropy REBCO films, which shows that an optimization of the composition of the HE REBCO films is needed to maximize their performance.

2.
J Phys Chem Lett ; 12(8): 2118-2125, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33625860

ABSTRACT

A low-cost chemical solution deposition technique was employed to prepare YBa2Cu3O7-δ (YBCO) nanocomposite films starting from a colloidal solution containing preformed ZrO2 nanocrystals. As previous publications revealed, an increase in the amount of nanocrystals results in a progressive deterioration of the film properties. The parameters that control this process and their interplay are still unknown in detail. Using definitive screening design (DSD), a design-of-experiments approach, allowed determining which of the multiple growth parameters play a key role for improving the superconducting properties of YBCO nanocomposite films even with a large concentration of nanocrystals. In order to show the potential of DSD, it has been applied for the optimization of two different properties: the critical temperature Tc and the full width at half-maximum of the (005) YBCO reflection. This work shows that DSD is a powerful and efficient method that allows optimizing certain processes with a minimal number of experiments.

3.
Sci Rep ; 10(1): 19469, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33173091

ABSTRACT

For the first time, GdBa2Cu3O7-x nanocomposites were prepared by chemical solution deposition following the ex-situ approach. In particular, ~ 220 nm GdBa2Cu3O7-x-HfO2 (GdBCO-HfO2) nanocomposite films were fabricated starting from a colloidal solution of 5 mol% HfO2 nanoparticles. Hereby, one of the main challenges is to avoid the accumulation of the nanoparticles at the substrate interface during the pyrolysis, which would later prevent the epitaxial nucleation of the GdBCO grains. Therefore, the effect of pyrolysis processing parameters such as heating ramp and temperature on the homogeneity of the nanoparticle distribution has been investigated. By increasing the heating ramp to 300 °C/h and decreasing the final temperature to 300 °C, a more homogenous nanoparticle distribution was achieved. This translates into improved superconducting properties of the grown films reaching critical temperatures (Tc) of 94.5 K and self-field critical current densities ([Formula: see text]) at 77 K of 2.1 MA/cm2 with respect to films pyrolyzed at higher temperatures or lower heating ramps.

4.
R Soc Open Sci ; 7(11): 201257, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33391804

ABSTRACT

The main objective of this work was to study the superconducting properties of REBCO films with a mixture of rare-earth (RE) ions with large difference in ion size, in particular Sm3+ and Yb3+. These Yb1-x Sm x Ba2Cu3O7- δ films have been successfully prepared for the first time by chemical solution deposition following the extremely low-fluorine route, which allows reducing the fluorine content by 93% with respect to standard full trifluoroacetate solutions. On the one hand, critical temperature T c remains stable at approximately 90 K with Sm content up to x = 0.5 where T c starts to increase towards the values of pure SmBCO films of approximately 95 K. On the other hand, the critical current densities J c of the pure SmBCO films are the largest at 77 K, where the influence of a higher T c is very relevant, while at lower temperatures and low fields, the mixed films reach larger values. This demonstrates that mixing rare-earth elements RE in REBa2Cu3O7- δ causes a change in the pinning properties of the films and reveals the importance of selecting adequate REBCO compounds according to the temperature and magnetic field region of a desired application.

5.
Nanomaterials (Basel) ; 10(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861729

ABSTRACT

Chemical solution deposition (CSD) was used to grow Y1-xGdxBa2Cu3O7-δ-BaHfO3 (YGBCO-BHO) nanocomposite films containing 12 mol% BHO nanoparticles and various amounts of Gd, x, on two kinds of buffered metallic tapes: Ni5W and IBAD. The influence of the rare-earth stoichiometry on structure, morphology and superconducting properties of these films was studied. The growth process was carefully studied in order to find the most appropriate growth conditions for each composition and substrate. This led to a clear improvement in film quality, probably due to the reduction of BaCeO3 formation. In general, the superconducting properties of the films on Ni5W are significantly better. For x > 0.5, epitaxial ~270 nm thick YGBCO-BHO films with Tc > 93 K and self-field Jc at 77 K ~2 MA/cm² were obtained on Ni5W. These results highlight the potential of this approach for the fabrication of high-quality coated conductors.

6.
RSC Adv ; 8(74): 42398-42404, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-35558403

ABSTRACT

Y1-x Gd x Ba2Cu3O7-δ -BaHfO3 (YGBCO-BHO) nanocomposite films containing 12 mol% BHO nanoparticles and different amounts of Gd were prepared by chemical solution deposition following the trifluoroacetic route on SrTiO3 single crystals in order to study the influence of the rare earth stoichiometry on structure, morphology and superconducting properties of these films. We optimized the growth process for each of several Gd contents of the 220 nm thick YGBCO-BHO films by varying crystallization temperature and oxygen partial pressure. This optimization process led to the conclusion that mixing the rare earths in YGBCO-BHO films leads to wider growth parameter windows compared to YBCO-BHO and GdBCO-BHO films giving larger freedom for selecting the most convenient processing parameters in order to adapt to different substrates or applications which is very important for the industrial production of coated conductors. The optimized films show a continuous increase of T c with Gd content x from ∼90 K for the YBCO-BHO films to ∼94 K for the GdBCO-BHO films. Consequently, an increase of the 77 K self-field J c with Gd content is observed reaching values > 7 MA cm-2 for Gd contents x > 0.5. The transport properties of these films under applied magnetic fields are significantly improved with respect to the pristine YBCO films. All YGBCO-BHO nanocomposite films grew epitaxially with c-axis orientation and excellent out-of-plane and in-plane texture. The films are dense with a low amount of pores and only superficial indentations.

7.
Sci Rep ; 6: 28390, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27328948

ABSTRACT

The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

SELECTION OF CITATIONS
SEARCH DETAIL
...