Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(31): 17049-17056, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34346431

ABSTRACT

The photophysical properties of heteroleptic rotor-like Ru(ii) complexes containing both a cyclopentadienyl-type ligand and a hydrotris(indazolyl)borate chelating unit with a piano stool structure (Ar5L1-Ru-S1 and L3-Ru-S1) and their corresponding subunits have been investigated. The complexes show peculiar absorption features when compared with their related ligands or fragments. L3-Ru-S1 was found to be non-emissive, while Ar5L1-Ru-S1 showed a weak emission with a quantum yield of 0.27%. With the help of DFT calculations, we demonstrate that the new absorption features can be attributed to ruthenium-based charge transfer transitions which involve the π* orbitals of the phenyl substituents of the cyclopentadienyl ligand.

2.
Chemistry ; 25(71): 16328-16339, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31603576

ABSTRACT

The design and synthesis of two families of molecular-gear prototypes is reported, with the aim of assembling them into trains of gears on a surface and ultimately achieving controlled intermolecular gearing motion. These piano-stool ruthenium complexes incorporate a hydrotris(indazolyl)borate moiety as tripodal rotation axle and a pentaarylcyclopentadienyl ligand as star-shaped cogwheel, equipped with five teeth ranging from pseudo-1D aryl groups to large planar 2D paddles. A divergent synthetic approach was followed, starting from a pentakis(p-bromophenyl)cyclopentadienyl ruthenium(II) complex as key precursor or from its iodinated counterpart, obtained by copper-catalyzed aromatic Br/I exchange. Subsequent fivefold cross-coupling reactions with various partners allowed high structural diversity to be reached and yielded molecular-gear prototypes with aryl-, carbazole-, BODIPY- and porphyrin-derived teeth of increasing size and length.

3.
Nat Commun ; 10(1): 3742, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31431627

ABSTRACT

Synthetic molecular machines designed to operate on materials surfaces can convert energy into motion and they may be useful to incorporate into solid state devices. Here, we develop and characterize a multi-component molecular propeller that enables unidirectional rotations on a material surface when energized. Our propeller is composed of a rotator with three molecular blades linked via a ruthenium atom to a ratchet-shaped molecular gear. Upon adsorption on a gold crystal surface, the two dimensional nature of the surface breaks the symmetry and left or right tilting of the molecular gear-teeth induces chirality. The molecular gear dictates the rotational direction of the propellers and step-wise rotations can be induced by applying an electric field or using inelastic tunneling electrons from a scanning tunneling microscope tip. By means of scanning tunneling microscope manipulation and imaging, the rotation steps of individual molecular propellers are directly visualized, which confirms the unidirectional rotations of both left and right handed molecular propellers into clockwise and anticlockwise directions respectively.

4.
Chem Commun (Camb) ; 52(11): 2326-9, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26728790

ABSTRACT

Pyrimidinyl and pyrazinyl radicals were generated under moderate energetic irradiation conditions (UVA), and proved to be prompt to undergo C-C bond formation processes. Hetero-biaryl derivatives were obtained in good to high yields with highly interesting functional group selectivities. Bis hetero-biaryls were also easily accessible leading to original compounds, ready for further transformations. Experiments supporting radical processes have been reported.


Subject(s)
Metals/chemistry , Photochemical Processes , Pyrimidines/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...