Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Peptides ; 157: 170881, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36185037

ABSTRACT

Peptide CRF antagonists injected peripherally alleviate stress-induced visceral hypersensitivity (SIVH) to colorectal distension (CRD) in rodents. Here we further evaluated the dose and time-dependent inhibitory activity of several long-acting peptide CRF receptor antagonists related to astressin on SIVH, focusing on astressin C (AstC), which previously showed high efficacy on stress-related alterations of HPA axis and gut secretomotor functions. Male and female Sprague-Dawley rats pretreated subcutaneously (SC) with AstC were injected intraperitoneally (IP) with CRF 15 min later. The visceromotor responses (VMR) to graded phasic CRD (10, 20, 40 and 60 mmHg) were monitored at basal, 15 min and up to 1-8 days after pretreatment. Two other astressin analogs, hexanoyl-astressin D (Hex-AstD) and [CαMeVal19,32]-AstC, were also tested. The response to IP CRF was sex-dependent with female rats requiring a higher dose to exhibit visceral hyperalgesia. Pretreatment with AstC (30-1000 µg/kg) resulted in a dose-related inhibition of IP CRF-induced SIVH and diarrhea in both sexes. The highest dose prevented SIVH and diarrhea up to 5-7 days after a single SC injection and was lost on day 7 (females) and day 8 (males) but reinstated after a second injection of AstC on day 8 or 9 respectively. [CαMeVal19,32]-AstC and Hex-AstD (1000 µg/kg in males) also prevented SIVH. These data show the potent long-lasting anti-hyperalgesic effect of AstC in an acute model of SIVH in both male and female rats. This highlights the potential of long-acting peripheral CRF antagonists to treat stress-sensitive irritable bowel syndrome.


Subject(s)
Visceral Pain , Animals , Corticotropin-Releasing Hormone/metabolism , Diarrhea , Female , Hyperalgesia/drug therapy , Hypothalamo-Hypophyseal System/metabolism , Male , Peptide Fragments , Pituitary-Adrenal System/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/metabolism , Stress, Psychological/drug therapy , Visceral Pain/drug therapy
2.
Nat Struct Mol Biol ; 23(10): 916-920, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27617429

ABSTRACT

Insulins in the venom of certain fish-hunting cone snails facilitate prey capture by rapidly inducing hypoglycemic shock. One such insulin, Conus geographus G1 (Con-Ins G1), is the smallest known insulin found in nature and lacks the C-terminal segment of the B chain that, in human insulin, mediates engagement of the insulin receptor and assembly of the hormone's hexameric storage form. Removal of this segment (residues B23-B30) in human insulin results in substantial loss of receptor affinity. Here, we found that Con-Ins G1 is monomeric, strongly binds the human insulin receptor and activates receptor signaling. Con-Ins G1 thus is a naturally occurring B-chain-minimized mimetic of human insulin. Our crystal structure of Con-Ins G1 reveals a tertiary structure highly similar to that of human insulin and indicates how Con-Ins G1's lack of an equivalent to the key receptor-engaging residue PheB24 is mitigated. These findings may facilitate efforts to design ultrarapid-acting therapeutic insulins.


Subject(s)
Antigens, CD/metabolism , Conus Snail/metabolism , Insulin/metabolism , Receptor, Insulin/metabolism , Venoms/metabolism , Amino Acid Sequence , Animals , Antigens, CD/chemistry , Humans , Insulin/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization , Receptor, Insulin/chemistry , Selenocysteine/chemistry , Selenocysteine/metabolism , Venoms/chemistry
3.
J Med Chem ; 59(3): 854-66, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26789203

ABSTRACT

CRF mediates numerous stress-related endocrine, autonomic, metabolic, and behavioral responses. We present the synthesis and chemical and biological properties of astressin B analogues {cyclo(30-33)[D-Phe(12),Nle(21,38),C(α)MeLeu(27,40),Glu(30),Lys(33)]-acetyl-h/r-CRF(9-41)}. Out of 37 novel peptides, 17 (2, 4, 6-8, 10, 11, 16, 17, 27, 29, 30, 32-36) and 16 (3, 5, 9, 12-15, 18, 19, 22-26, 28, 31) had k(i) to CRF receptors in the high picomolar and low nanomole ranges, respectively. Peptides 1, 2, and 11 inhibited h/rCRF and urocortin 1-induced cAMP release from AtT20 and A7r5 cells. When Astressin C 2 was administered to adrenalectomized rats at 1.0 mg subcutaneously, it inhibited ACTH release for >7 d. Additional rat data based on the inhibitory effect of (2) on h/rCRF-induced stimulation of colonic secretory motor activity and urocortin 2-induced delayed gastric emptying also indicate a safe and long-lasting antagonistic effect. The overall properties of selected analogues may fulfill the criteria expected from clinical candidates.


Subject(s)
Corticotropin-Releasing Hormone/pharmacology , Peptide Fragments/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Corticotropin-Releasing Hormone/administration & dosage , Corticotropin-Releasing Hormone/chemistry , Cyclic AMP/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Peptide Fragments/administration & dosage , Peptide Fragments/chemistry , Rats , Structure-Activity Relationship , Urocortins/antagonists & inhibitors
4.
J Pharmacol Exp Ther ; 353(2): 307-17, 2015 May.
Article in English | MEDLINE | ID: mdl-25736419

ABSTRACT

The corticotropin-releasing factor (CRF) peptide family comprises the mammalian peptides CRF and the urocortins as well as frog skin sauvagine and fish urophyseal urotensin. Advances in understanding the roles of the CRF ligand family and associated receptors have often relied on radioreceptor assays using labeled CRF ligands. These assays depend on stable, high-affinity CRF analogs that can be labeled, purified, and chemically characterized. Analogs of several of the native peptides have been used in this context, most prominently including sauvagine from the frog Phyllomedusa sauvageii (PS-Svg). Because each of these affords both advantages and disadvantages, new analogs with superior properties would be welcome. We find that a sauvagine-like peptide recently isolated from a different frog species, Pachymedusa dacnicolor (PD-Svg), is a high-affinity agonist whose radioiodinated analog, [(125)ITyr(0)-Glu(1), Nle(17)]-PD-Svg, exhibits improved biochemical properties over those of earlier iodinated agonists. Specifically, the PD-Svg radioligand binds both CRF receptors with comparably high affinity as its PS-Svg counterpart, but detects a greater number of sites on both type 1 and type 2 receptors. PD-Svg is also ∼10 times more potent at stimulating cAMP accumulation in cells expressing the native receptors. Autoradiographic localization using the PD-Svg radioligand shows robust specific binding to rodent brain and peripheral tissues that identifies consensus CRF receptor-expressing sites in a greater number and/or with greater sensitivity than its PS-Svg counterpart. We suggest that labeled analogs of PD-Svg may be useful tools for biochemical, structural, pharmacological, and anatomic studies of CRF receptors.


Subject(s)
Amphibian Proteins/metabolism , Anura , Peptide Hormones/metabolism , Radioligand Assay/methods , Receptors, Corticotropin-Releasing Hormone/metabolism , Amino Acid Sequence , Amphibian Proteins/chemistry , Animals , Cell Line , Humans , Isotope Labeling , Kinetics , Ligands , Mice , Molecular Sequence Data , Peptide Hormones/chemistry , Protein Transport , Rats , Receptors, Corticotropin-Releasing Hormone/chemistry
5.
J Nucl Med ; 53(9): 1481-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22851637

ABSTRACT

Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.


Subject(s)
Receptors, Somatostatin/antagonists & inhibitors , Somatostatin/chemistry , Somatostatin/pharmacology , Animals , Female , Gallium Radioisotopes/chemistry , Gene Expression Regulation, Neoplastic , HEK293 Cells , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Receptors, Somatostatin/metabolism , Somatostatin/metabolism , Somatostatin/pharmacokinetics
6.
J Med Chem ; 54(17): 5981-7, 2011 Sep 08.
Article in English | MEDLINE | ID: mdl-21806016

ABSTRACT

Despite 3 decades of focused chemical, biological, structural, and clinical developments, unusual properties of somatostatin (SRIF, 1) analogues are still being uncovered. Here we report the unexpected functional properties of 1 and the octapeptide cyclo(3-14)H-Cys-Phe-Phe-Trp(8)-Lys-Thr-Phe-Cys-OH (somatostatin numbering; OLT-8, 9) substituted by imBzl-l- or -d-His at position 8. These analogues were tested for their binding affinity to the five human somatostatin receptors (sst(1-5)), as well as for their functional properties (or functionalities) in an sst(3) internalization assay and in an sst(3) luciferase reporter gene assay. While substitution of Trp(8) in somatostatin by imBzl-l- or -d-His(8) results in sst(3) selectivity, substitution of Trp(8) in the octapeptide 9 by imBzl-l- or -d-His(8) results in loss of binding affinity for sst(1,2,4,5) and a radical functional switch from agonist to antagonist.


Subject(s)
Histidine/chemistry , Imidazoles/chemistry , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Somatostatin/analogs & derivatives , Cells, Cultured , Humans , Immunoenzyme Techniques , Luciferases/metabolism , Radioligand Assay , Receptors, Somatostatin/metabolism , Somatostatin/chemistry , Stereoisomerism , Structure-Activity Relationship
7.
EJNMMI Res ; 1(1): 21, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-22214201

ABSTRACT

BACKGROUND: Several peptide hormone receptors were identified that are specifically over-expressed on the cell surface of certain human tumors. For example, high incidence and density of the Y1 subtype of neuropeptide Y (NPY) receptors are found in breast tumors. Recently, we demonstrated that the use of potent radiolabeled somatostatin or bombesin receptor antagonists considerably improved the sensitivity of in vivo imaging when compared to agonists. We report here on the first DOTA-coupled peptidic Y1 receptor affine dimer antagonists. METHODS: Based on a Y1 affine dimeric peptide scaffold previously reported to competitively antagonize NPY-mediated processes, we have developed new dimeric DOTA-coupled Y1 receptor affine antagonists for scintigraphy and radiotherapy. These dimeric peptides were tested for their specific binding to Y1 expressed in SK-N-MC cells and Y2 expressed in SH-SY5Y as well as for their ability to mediate cAMP production in SK-N-MC cells. RESULTS: Introduction of two DOTA moieties at the N-termini of the dimeric NPY analogs as well as the double Asn29 replacement by Dpr(DOTA) or Lys(DOTA) (6 and 10) moiety dramatically reduced binding affinity. However, asymmetric introduction of the DOTA moiety in one segment of the peptidic heterodimer (8 and 11) resulted in suitable antagonists for receptor targeting with high binding affinity for Y1. All compounds were devoid of Y2 binding affinity. CONCLUSIONS: The design and the in vitro characterization of the first DOTA-coupled dimeric NPY receptor antagonist with high affinity and selectivity for Y1 over Y2 are described. This compound may be an excellent candidate for the imaging of Y1-positive tumors and their treatment.

8.
Eur J Nucl Med Mol Imaging ; 37(8): 1551-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20396884

ABSTRACT

PURPOSE: Peptide receptor targeting has become an increasingly attractive method to target tumors diagnostically and radiotherapeutically. Peptides linked to a variety of chelators have been developed for this purpose. They have, however, rarely been tested for their agonistic or antagonistic properties. We report here on a somatostatin antagonist that switched to an agonist upon coupling to a DOTA chelator. METHODS: Two novel somatostatin analogs, 406-040-15 and its DOTA-coupled counterpart 406-051-20, with and without cold Indium labeling, were tested for their somatostatin receptor subtypes 1-5 (sst(1)-sst(5)) binding affinity using receptor autoradiography. Moreover, they were tested functionally for their ability to affect sst(2) and sst(3) internalization in vitro in HEK293 cells stably expressing the human sst(2) or sst(3) receptor, using an immunofluorescence microscopy-based internalization assay. RESULTS: All three compounds were characterized as pan-somatostatin analogs having a high affinity for all five sst. In the sst(2) internalization assay, all three compounds showed an identical behavior, namely, a weak agonistic effect complemented by a weak antagonistic effect, compatible with the behavior of a partial agonist. Conversely, in the sst(3) internalization assay, 406-040-15 was a full antagonist whereas its DOTA-coupled counterpart, 406-051-20, with and without Indium labeling, switched to a full agonist. CONCLUSION: Adding the DOTA chelator to the somatostatin analog 406-040-15 triggers a switch at sst(3) receptor from an antagonist to an agonist. This indicates that potential radioligands for tumor targeting should always be tested functionally before further development, in particular if a chelator is added.


Subject(s)
Chelating Agents/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Somatostatin/analogs & derivatives , Somatostatin/pharmacology , Cell Line , Humans , Protein Transport/drug effects , Receptors, Somatostatin/metabolism , Somatostatin/chemistry , Somatostatin/metabolism
9.
J Med Chem ; 52(9): 2733-46, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19351180

ABSTRACT

The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.


Subject(s)
Drug Design , Peptides/chemistry , Peptides/metabolism , Receptors, Somatostatin/chemistry , Amino Acid Sequence , Animals , Cell Line , Cricetinae , Iodine Radioisotopes/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Peptides/chemical synthesis , Protein Binding , Protein Conformation , Receptors, Somatostatin/metabolism , Structure-Activity Relationship , Substrate Specificity
10.
Biopolymers ; 89(12): 1077-87, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18655144

ABSTRACT

The three-dimensional NMR structures of seven octapeptide analogs of somatostatin (SRIF), based on octreotide, with the basic sequence H-Cpa/Phe2-c[DCys3-Xxx7-DTrp/DAph(Cbm)8-Lys9-Thr10-Cys14]-Yyy-NH2 (the numbering refers to the position in native SRIF), with Xxx7 being Aph(Cbm)/Tyr/Agl(NMe,benzoyl) and Yyy being Nal/DTyr/Thr, are presented here. Most of these analogs exhibit potent and highly selective binding to sst2 receptors, and all of the analogs are antagonists inhibiting receptor signaling. Based on their consensus 3D structure, the pharmacophore of the sst2-selective antagonist has been defined. The pharmacophore involves the side chains of Cpa2, DTrp/DAph(Cbm)8, and Lys9, with the backbone for most of the sst2-selective antagonists comprised a Type-II' beta-turn. Hence, the sst2-selective antagonist pharmacophore is very similar to the sst2-selective agonist pharmacophore previously described.


Subject(s)
Somatostatin/antagonists & inhibitors , Amino Acid Sequence , Consensus Sequence , Cysteine , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Oligopeptides/chemistry , Protein Conformation , Receptors, Somatostatin/chemistry , Sodium Iodide , Structure-Activity Relationship , Threonine
11.
J Med Chem ; 51(9): 2676-81, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18410083

ABSTRACT

H-DPhe (2)-c[Cys (3)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Thr (15)-NH2 (1) (a somatostatin agonist, SRIF numbering) and H-Cpa (2)-c[DCys (3)-Tyr (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Nal (15)-NH2 (4) (a somatostatin antagonist) are based on the structure of octreotide that binds to three somatostatin receptor subtypes (sst 2/3/5) with significant binding affinity. Analogues of 1 and 4 were synthesized with norcysteine (Ncy), homocysteine (Hcy), or D-homocysteine (DHcy) at positions 3 and/or 14. Introducing Ncy at positions 3 and 14 constrained the backbone flexibility, resulting in loss of binding affinity at all sst s. The introduction of Hcy at positions 3 and 14 improved selectivity for sst 2 as a result of significant loss of binding affinity at the other sst s. Substitution by DHcy at position 3 in the antagonist scaffold (5), on the other hand, resulted in a significant loss of binding affinity at sst 2 and sst 3 as compared to the different affinities of the parent compound (4). The 3D NMR structures of the analogues in dimethylsulfoxide are consistent with the observed binding affinities.


Subject(s)
Octreotide/chemical synthesis , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Cell Line , Cysteine/chemistry , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Octreotide/chemistry , Octreotide/pharmacology , Radioligand Assay , Stereoisomerism , Structure-Activity Relationship
12.
J Med Chem ; 51(9): 2668-75, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18410084

ABSTRACT

The synthesis, biological testing, and NMR studies of several analogues of H-c[Cys (3)-Phe (6)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Phe (11)-Cys (14)]-OH (ODT-8, a pan-somatostatin analogue, 1) have been performed to assess the effect of changing the stereochemistry and the number of atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (somatostatin numbering) were/was substituted with d-cysteine, norcysteine, D-norcysteine, homocysteine, and/or D-homocysteine. The 3D structure analysis of selected partially selective, bioactive analogues (3, 18, 19, and 21) was carried out in dimethylsulfoxide. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst 4 in all cases).


Subject(s)
Peptides, Cyclic/chemical synthesis , Receptors, Somatostatin/metabolism , Animals , Binding, Competitive , CHO Cells , Cricetinae , Cricetulus , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Radioligand Assay , Stereoisomerism , Structure-Activity Relationship
13.
Proc Natl Acad Sci U S A ; 103(44): 16436-41, 2006 Oct 31.
Article in English | MEDLINE | ID: mdl-17056720

ABSTRACT

Targeting neuroendocrine tumors expressing somatostatin receptor subtypes (sst) with radiolabeled somatostatin agonists is an established diagnostic and therapeutic approach in oncology. While agonists readily internalize into tumor cells, permitting accumulation of radioactivity, radiolabeled antagonists do not, and they have not been considered for tumor targeting. The macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to two potent somatostatin receptor-selective peptide antagonists [NH(2)-CO-c(DCys-Phe-Tyr-DAgl(8)(Me,2-naphthoyl)-Lys-Thr-Phe-Cys)-OH (sst(3)-ODN-8) and a sst(2)-selective antagonist (sst(2)-ANT)], for labeling with (111/nat)In. (111/nat)In-DOTA-sst(3)-ODN-8 and (111/nat)In-DOTA-[4-NO(2)-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH(2)] ((111/nat)In-DOTA-sst(2)-ANT) showed high sst(3)- and sst(2)-binding affinity, respectively. They did not trigger sst(3) or sst(2) internalization but prevented agonist-stimulated internalization. (111)In-DOTA-sst(3)-ODN-8 and (111)In-DOTA-sst(2)-ANT were injected intravenously into mice bearing sst(3)- and sst(2)-expressing tumors, and their biodistribution was monitored. In the sst(3)-expressing tumors, strong accumulation of (111)In-DOTA-sst(3)-ODN-8 was observed, peaking at 1 h with 60% injected radioactivity per gram of tissue and remaining at a high level for >72 h. Excess of sst(3)-ODN-8 blocked uptake. As a control, the potent agonist (111)In-DOTA-[1-Nal(3)]-octreotide, with strong sst(3)-binding and internalization properties showed a much lower and shorter-lasting uptake in sst(3)-expressing tumors. Similarly, (111)In-DOTA-sst(2)-ANT was injected into mice bearing sst(2)-expressing tumors. Tumor uptake was considerably higher than with the highly potent sst(2)-selective agonist (111)In-diethylenetriaminepentaacetic acid-[Tyr(3),Thr(8)]-octreotide ((111)In-DTPA-TATE). Scatchard plots showed that antagonists labeled many more sites than agonists. Somatostatin antagonist radiotracers therefore are preferable over agonists for the in vivo targeting of sst(3)- or sst(2)-expressing tumors. Antagonist radioligands for other peptide receptors need to be evaluated in nuclear oncology as a result of this paradigm shift.


Subject(s)
Neoplasms/metabolism , Receptors, Peptide/metabolism , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/metabolism , Animals , Humans , Mice , Mice, Nude , Molecular Structure , Neoplasms/pathology , Radioligand Assay , Receptors, Somatostatin/agonists , Receptors, Somatostatin/chemistry , Somatostatin/analogs & derivatives , Somatostatin/metabolism
14.
J Med Chem ; 49(15): 4487-96, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16854054

ABSTRACT

The 3D NMR structures of six octapeptide agonist analogues of somatostatin (SRIF) in the free form are described. These analogues, with the basic sequence H-DPhe/Phe2-c[Cys3-Xxx7-DTrp8-Lys9-Thr10-Cys14]-Thr-NH2 (the numbering refers to the position in native SRIF), with Xxx7 being Ala/Aph, exhibit potent and highly selective binding to human SRIF type 2 (sst2) receptors. The backbone of these sst2-selective analogues have the usual type-II' beta-turn reported in the literature for sst2/3/5-subtype-selective analogues. Correlating the biological results and NMR studies led to the identification of the side chains of DPhe2, DTrp8, and Lys9 as the necessary components of the sst2 pharmacophore. This is the first study to show that the aromatic ring at position 7 (Phe7) is not critical for sst2 binding and that it plays an important role in sst3 and sst5 binding. This pharmacophore is, therefore, different from that proposed by others for sst2/3/5 analogues.


Subject(s)
Models, Molecular , Oligopeptides/chemistry , Receptors, Somatostatin/agonists , Receptors, Somatostatin/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Structure-Activity Relationship
15.
J Pept Sci ; 12(2): 82-91, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16365912

ABSTRACT

The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Receptors, Somatostatin/chemistry , Somatostatin/analogs & derivatives , Amino Acid Sequence , Models, Molecular , Protein Conformation , Solutions , Somatostatin/chemistry , Water
16.
J Med Chem ; 48(2): 507-14, 2005 Jan 27.
Article in English | MEDLINE | ID: mdl-15658864

ABSTRACT

Des-AA(1,2,5)-[d-Trp(8)/d-Nal(8),IAmp(9)]SRIF (AA = amino acid, Nal = 3-(2-naphthyl)-alanine, IAmp = 4-(N-isopropyl)-aminomethylphenylalanine, SRIF = somatostatin), with or without a tyrosine or monoiodotyrosine, were scanned with the introduction of a backbone N-methyl group and tested for binding affinity at the five human somatostatin receptors (sst(1)(-)(5)). N(alpha)-Methylation resulted in loss of sst affinity (2- to >5-fold) when introduced at residues Lys(4) (6), Phe(6) (7), Phe(7) (8), Thr(10) (11), and Phe(11) (12) of the parent compound Des-AA(1,2,5)-[d-Nal(8),IAmp(9)]SRIF (4). N(alpha)-Methylation was tolerated at residues Cys(3) (5), d-Nal(8) (9), Thr(12) (13), and Cys(14) (15) with retention of binding sst affinity and selectivity and resulted in an increase in sst binding affinity at positions IAmp(9) (10) and Ser(13) (14). In these series, the d-Trp(8) substitution versus d-Nal(8) is clearly superior. C-Terminally lysine-extended analogues (21-25) retained sst(1) selectivity and binding affinity when compared to their d-Nal(8)- (4) or d-Trp(8)- (3) containing parent. Des-AA(1,2,5)-[d-Trp(8), (N(alpha)Me)IAmp(9)]SRIF (17), Des-AA(1,2,5)-[d-Trp(8),IAmp(9),(N(alpha)Me)Ser(13)]SRIF (19), Des-AA(1,2,5)-[d-Trp(8),IAmp(9),(N(alpha)Me)Cys(14)]SRIF (20), Des-AA(1,2,5)-[d-Trp(8),(N(alpha)Me)IAmp(9),Tyr(11)]SRIF (34), and Des-AA(1,2,5)-[d-Agl(8)(N(beta)Me,2-naphthoyl),IAmp(9),Tyr(11)]SRIF (42) (Agl = aminoglycine) are sst(1) agonists in their ability to inhibit forskolin-induced cAMP production.


Subject(s)
Receptors, Somatostatin/agonists , Somatostatin/analogs & derivatives , Somatostatin/chemical synthesis , Animals , CHO Cells , Colforsin/pharmacology , Cricetinae , Cricetulus , Cyclic AMP/antagonists & inhibitors , Cyclic AMP/biosynthesis , Humans , Methylation , Radioligand Assay , Somatostatin/chemistry , Somatostatin/pharmacology , Structure-Activity Relationship
17.
J Med Chem ; 48(2): 515-22, 2005 Jan 27.
Article in English | MEDLINE | ID: mdl-15658865

ABSTRACT

The binding affinity of short chain somatostatin (SRIF) analogues at the five human SRIF receptors (sst) was determined to identify sterically constrained somatostatin receptor subtype 1 (sst(1)) selective scaffolds. Des-AA(1,2,4,13)-[d-Trp(8)]SRIF (2) retained high binding affinity at all receptors but sst(1), Des-AA(1,2,4,5)-[d-Trp(8)]SRIF (3) at sst(4) and sst(5), and Des-AA(1,2,4,5,13)-[d-Trp(8)]SRIF (4) at sst(2) and sst(4) (AA = amino acid). Des-AA(1,2,4,12,13)-[d-Trp(8)]SRIF (6) was potent and sst(4)-selective (>25-fold); Des-AA(1,2,5,12,13)-[d-Trp(8)]SRIF (7) and Des-AA(1,2,4,5,12,13)-[d-Trp(8)]-SRIF (9, ODT-8) were most potent at sst(4) and moderately potent at all other receptors. Dicyclic SRIF agonists of the sst(1)-selective Des-AA(1,5)-[Tyr(2),d-Trp(8),IAmp(9)]SRIF, (14, sst(1) IC(50) = 14 nM) were prepared in which a lactam bridge introduced additional conformational constraint (IAmp = 4-(N-isopropyl)-aminomethylphenylalanine). Cyclo(7-12)Des-AA(1,5)-[Tyr(2),Glu(7),d-Trp(8),IAmp(9),hhLys(12)]SRIF (31) (sst(1) IC(50) = 16 nM) and cyclo(7-12) Des-AA(1,2,5)-[Glu(7),d-Trp(8),IAmp(9),m-I-Tyr(11),hhLys(12)]SRIF (45) (sst(1) IC(50) = 6.1 nM) had equal or improved affinities over that of the parent 14. Binding affinity was decreased in all other cases with alternate bridging constraints such as cyclo (6-11), cyclo (6-12), and cyclo (7-11). Compound 45 is an agonist (EC(50) = 8.8 nM) in the adenylate cyclase assay.


Subject(s)
Peptides, Cyclic/chemical synthesis , Receptors, Somatostatin/agonists , Somatostatin/analogs & derivatives , Somatostatin/chemical synthesis , Animals , CHO Cells , Colforsin/pharmacology , Cricetinae , Cricetulus , Cyclic AMP/antagonists & inhibitors , Cyclic AMP/biosynthesis , Humans , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Radioligand Assay , Somatostatin/chemistry , Somatostatin/pharmacology , Structure-Activity Relationship
18.
J Med Chem ; 48(2): 523-33, 2005 Jan 27.
Article in English | MEDLINE | ID: mdl-15658866

ABSTRACT

The three-dimensional NMR structures of six analogues of somatostatin (SRIF) are described. These analogues with the amino acid 4-(N-isopropyl)-aminomethylphenylalanine (IAmp) at position 9 exhibit potent and highly selective binding to human SRIF subtype 1 receptors (sst(1)). The conformations reveal that the backbones of these analogues have a hairpin-like structure similar to the sst(2)-subtype-selective analogues. This structure serves as a scaffold for retaining a unique arrangement of the side chains of d-Trp(8), IAmp(9), Phe(7), and Phe(11) or m-I-Tyr(11) (m-I-Tyr = mono-iodo-tyrosine). The conformational preferences and results from biological analyses of these analogues(1,2) allow a detailed study of the structure-activity relationship of SRIF. The proposed consensus pharmacophore of the sst(1)-selective analogues requires a unique set of distances between an indole/2-naphthyl ring, an IAmp side chain, and two aromatic rings. This motif is necessary and sufficient to explain the binding affinities of all of the analogues studied and is distinct from the existing models suggested for sst(4) as well as sst(2)/sst(5) selectivity.


Subject(s)
Peptides, Cyclic/chemistry , Receptors, Somatostatin/agonists , Somatostatin/analogs & derivatives , Somatostatin/chemistry , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Receptors, Somatostatin/chemistry
19.
J Med Chem ; 46(26): 5579-86, 2003 Dec 18.
Article in English | MEDLINE | ID: mdl-14667212

ABSTRACT

Hypothesizing that structural constraints in somatostatin (SRIF) analogues may result in receptor selectivity, and aiming to characterize the bioactive conformation of somatostatin at each of its five receptors, we carried out an N(beta)-methylated aminoglycine (Agl) scan of the octapeptide H-c[Cys(3)-Phe(6)-Phe(7)-dTrp(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)]-OH (SRIF numbering) (ODT-8) that is potent at all SRIF receptor subtypes (sst's) but sst(1). We found that H-c[Cys-LAgl(N(beta)Me,benzoyl)-Phe-DTrp-Lys-Thr-Phe-Cys]-OH (4), H-c[Cys-Phe-LAgl(N(beta)Me,benzoyl)-Trp-Lys-Thr-Phe-Cys]-OH (6), H-c[Cys-Phe-LAgl(N(beta)Me,benzoyl)-dTrp-Lys-Thr-Phe-Cys]-OH (8), and H-c[DCys-Phe-LAgl(N(beta)Me,benzoyl)-DTrp-Lys-Thr-Phe-Cys]-OH (10) had high affinity (IC(50) = 14.3, 5.4, 5.2, and 3.4 nM, respectively) and selectivity for sst(4) (>50-fold over the other receptors). The l-configuration at positions 7 and 8 (l(7), l(8)) yields greater sst(4) selectivity than the l(7), d(8) configuration (6 versus 8). Peptides with the d(7), l(8) (7) and d(7), d(8) (9) configurations are significantly less potent at all receptors. H-c[Cys-Phe-Phe-DTrp-LAgl(betaAla)-Thr-Phe-Cys]-OH (16), H-c[Cys-Phe-Phe-DTrp-DAgl(betaAla)-Thr-Phe-Cys]-OH (17), and their N(beta)Me derivatives at position 9 (18, 19) were essentially inactive. Potent but less sst(4)-selective were members of the Agl-scan at positions 10, H-c[Cys-Phe-Phe-dTrp-Lys-lAgl(N(beta)Me,HO-Ac)-Phe-Cys]-OH (20, IC(50) = 6.5 nM), and 11, H-c[Cys-Phe-Phe-DTrp-Lys-Thr-LAgl(N(beta)Me,benzoyl)-Cys]-OH (22, IC(50) = 6.9 nM), while the d-configuration at positions 10 (21) and 11 (23) led to reduced affinity. One of our best analogues, 8, is an agonist when tested for its ability to inhibit forskolin-stimulated cAMP accumulation in sst(4)-transfected CCL39 cells (EC(50) = 1.01 nM). All Agl-containing analogues were first synthesized using unresolved Fmoc-Agl(N(beta)Me,Boc)-OH, and the diastereomers were separated using HPLC. Chiral assignment at the Agl-containing residue was subsequently done using enzymatic degradation and by de novo synthesis in the cases of H-c[Cys-Phe-DAgl(N(beta)Me,benzoyl)-DTrp-Lys-Thr-Phe-Cys]-OH (9) and H-c[DCys-Phe-DAgl(N(beta)Me,benzoyl)-DTrp-Lys-Thr-Phe-Cys]-OH (11), starting with the papain-resolved Fmoc-DAgl(Boc). These results suggested that the orientation of side chains at position 6, 7, or 11 with respect to the side chains of residues 8 and 9 may be independently responsible for sst(4) selectivity.


Subject(s)
Oligopeptides/chemical synthesis , Peptides, Cyclic/chemical synthesis , Receptors, Somatostatin/agonists , Receptors, Somatostatin/chemistry , Somatostatin/analogs & derivatives , Somatostatin/chemical synthesis , Animals , Autoradiography , Binding, Competitive , Cell Line , Cricetinae , Cyclic AMP/biosynthesis , Humans , Ligands , Membrane Proteins , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Radioligand Assay , Somatostatin/chemistry , Somatostatin/pharmacology , Stereoisomerism , Structure-Activity Relationship
20.
J Med Chem ; 46(26): 5587-96, 2003 Dec 18.
Article in English | MEDLINE | ID: mdl-14667213

ABSTRACT

We present a family of human sst(4)-selective, high-affinity (IC(50) = 2-4 nM) cyclic somatostatin (SRIF) octapeptides. These peptides result from the substitution of dTrp(8) in H-c[Cys(3)-Phe(6)-Phe(7)-DTrp(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)]-OH (SRIF numbering) (ODT-8) by one of the four conformationally biased stereoisomers of beta-methyl-3-(2-naphthyl)alanine (beta-Me2Nal). Whereas H-c[Cys-Phe-Phe-DNal-Lys-Thr-Phe-Cys]-OH (ODN-8, 2) has high affinity and marginal selectivity for human sst(3) (Reubi et al., Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13973-13978), H-c[Cys-Phe-Tyr-D-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (5) has high affinity for all sst's except for sst(1); H-c[Cys-Phe-Tyr-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (6) has high affinity for sst(4) (IC(50) = 2.1 nM), with more than 50-fold selectivity toward the other receptors. Analogues 7 and 8, containing d- and l-erythro-beta-Me2Nal instead of the corresponding threo derivatives at position 8, are essentially inactive at all receptors. Substitution of Tyr(7) in 5 and 6 by Aph(7) resulted in 9 and 10 with similar affinity patterns overall yet lowered affinity. The substitution of DCys(3) for Cys(3) in 5 and 6 yielded H-c[DCys-Phe-Tyr-D-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (11) and H-c[DCys-Phe-Tyr-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (12), with biological profiles almost identical to those of their parents 5 and 6 (i.e., high affinity for sst(2-5) for 11 and high affinity and selectivity for sst(4) for 12). Analogue 12, with high sst(4) affinity combined with the highest sst(4) selectivity among all tested compounds, is an agonist in the cAMP accumulation assay (EC(50) = 1.29 nM). Cold monoiodination of 12 yielded 14, with loss of sst(4) selectivity and loss of high affinity (IC(50) = 21 nM). Introduction of Tyr(2) in 9 and 10 and substitution of Cys(3) by dCys(3), to yield 15 and 16 (IC(50) = 9.8 and 61 nM, respectively, for sst(4) and limited selectivity), failed to generate a high-affinity (125)iodinatable sst(4)-selective ligand. Substitution of Phe by Tyr at position 11 in H-c[DCys-Phe-Phe-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH yielded 18 (IC(50) = 11.8 nM at sst(4)), with limited sst(4) selectivity (30-fold or greater at the other receptors) yet only slightly improved affinity over that of 14. Cold monoiodination of 18 yielded 20 (IC(50) = 30 nM at sst(4) and high selectivity). Whereas we were able, in this study, to identify a new family of sst(4)-selective, high-affinity compounds, our additional goal, to identify highly potent and sst(4)-selective ligands amenable to (125)iodination, could not be achieved satisfactorily. On the other hand, some of the diastereomers identified in this study, such as 5, 11, 17, and 19, are very potent ligands at all receptors but sst(1).


Subject(s)
Alanine/chemistry , Naphthalenes/chemistry , Oligopeptides/chemical synthesis , Peptides, Cyclic/chemical synthesis , Receptors, Somatostatin/agonists , Receptors, Somatostatin/chemistry , Somatostatin/analogs & derivatives , Somatostatin/chemical synthesis , Alanine/analogs & derivatives , Animals , Autoradiography , Binding, Competitive , Cell Line , Cricetinae , Cyclic AMP/biosynthesis , Humans , Iodine Radioisotopes , Isotope Labeling , Ligands , Membrane Proteins , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Protein Conformation , Radioligand Assay , Somatostatin/chemistry , Somatostatin/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...